992 resultados para TDD MIMO communication
Resumo:
In indoor environments the properties of communication channel are affected by the presence of various objects which block the Line Of Sight signal propagation. For example, this occurs because of presence of movement of humans and furniture. In this paper, the effect of reflection and scattering due to the presence of such objects is studied with respect to the capacity of a multiple input multiple output (MIMO) wireless system. The carried out investigations are performed by applying a simple electromagnetic model, in which transmitting and receiving antennas of MIMO system, as well as signal blocking objects, are represented by wire dipoles. In order to provide a fair assessment, calculations of MIMO capacity are performed under both fixed transmitted power and fixed received power conditions.
Resumo:
In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.
Resumo:
We study a multiuser multicarrier downlink communication system in which the base station (BS) employs a large number of antennas. By assuming frequency-division duplex operation, we provide a beam domain channel model as the number of BS antennas grows asymptotically large. With this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate before developing necessary conditions to asymptotically maximize the upper bound, with only statistical channel state information at the BS. Inspired by these conditions, we propose a beam division multiple access (BDMA) transmission scheme, where the BS communicates with users via different beams. For BDMA transmission, we design user scheduling to select users within non-overlapping beams, work out an optimal pilot design under a minimum mean square error criterion, and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. The proposed BDMA scheme reduces significantly the pilot overhead, as well as, the processing complexity at transceivers. Simulations demonstrate the high spectral efficiency of BDMA transmission and the advantages in the bit error rate performance of the proposed pilot sequences.
Resumo:
Recent years have witnessed an increasing evolution of wireless mobile networks, with an intensive research work aimed at developing new efficient techniques for the future 6G standards. In the framework of massive machine-type communication (mMTC), emerging Internet of Things (IoT) applications, in which sensor nodes and smart devices transmit unpredictably and sporadically short data packets without coordination, are gaining an increasing interest. In this work, new medium access control (MAC) protocols for massive IoT, capable of supporting a non-instantaneous feedback from the receiver, are studied. These schemes guarantee an high time for the acknowledgment (ACK) messages to the base station (BS), without a significant performance loss. Then, an error floor analysis of the considered protocols is performed in order to obtain useful guidelines for the system design. Furthermore, non-orthogonal multiple access (NOMA) coded random access (CRA) schemes based on power domain are here developed. The introduction of power diversity permits to solve more packet collision at the physical (PHY) layer, with an important reduction of the packet loss rate (PLR) in comparison to the number of active users in the system. The proposed solutions aim to improve the actual grant-free protocols, respecting the stringent constraints of scalability, reliability and latency requested by 6G networks.
Resumo:
We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.
Resumo:
Fibromyalgia syndrome (FMS) is a chronic painful syndrome and the coexistence of a painful condition caused by Temporomandibular Disorders (TMD) and FMS has been frequently raised for several studies, however, more likely hypothesis is that a set of FMS characteristics may lead to the onset of TMD symptoms and they are not merely coexisting conditions. Therefore, our aim is presenting a review of literature about the relation between fibromyalgia and the signs and symptoms of temporomandibular disorders. For this purpose, a bibliographic search was performed of the period of 1990-2013, in the Medline, Pubmed, Lilacs and Scielo databases, using the keywords fibromyalgia, temporomandibular disorders and facial pain. Here we present a set of findings in the literature showing that fibromyalgia can lead to TMD symptoms. These studies demonstrated greater involvement of the stomatognathic system in FMS and myogenic disorders of masticatory system are the most commonly found in those patients. FMS appears to have a series of characteristics that constitute predisposing and triggering factors for TMD.
Resumo:
Patients using obturator prostheses often present denture-induced stomatitis. In order to detect the presence of oral Candida albicans in patients with oronasal communications and to evaluate the effectiveness of a topical antifungal treatment, cytological smears obtained from the buccal and palatal mucosa of 10 adult patients, and from the nasal acrylic surface of their obturator prostheses were examined. A therapeutic protocol comprising the use of oral nystatin (Mycostatin®) and prosthesis disinfection with sodium hypochlorite was prescribed for all patients. Seven patients were positive for C. albicans in the mucosa, with 1 negative result for the prosthetic surface in this group of patients. Post-treatment evaluation revealed the absence of C. albicans on prosthesis surface and on the oral mucosa of all patients. The severity of the candidal infection was significantly higher in the palatal mucosa than in the buccal mucosa, but similar in the palatal mucosa and prosthesis surface, indicating that the mucosa underlying the prosthesis is more susceptible to infection. The therapeutic protocol was effective in all cases, which emphasizes the need for denture disinfection in order to avoid reinfection of the mucosa.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
During the first half of 2006 the city of Sao Paulo suffered three series of violent attacks against the security forces, civilians, and the government. The violent campaign also included a massive rebellion in prisons and culminated in the kidnapping of a journalist and the broadcast of a manifesto from the criminal organization PCC threatening the police and the government. Right after, the main device used to contain organized crime in the prisons was declared unconstitutional. This episode represents a prototypical example of the use of media-focused terrorism by organized crime for projection into the political communication arena.
Resumo:
This article discusses possible approaches for optical network capacity upgrade by considering the use of different modulation formats at 40 Gb/s. First, a performance evaluation is carried out regarding tolerance to three impairments: spectral narrowing due to filter cascading, chromatic dispersion, and self-phase modulation. Next, a cost-benefit analysis is conducted, considering the specific optoelectronic components required for the optical transmitter/receiver configuration of each format.
Resumo:
A secure communication system based on the error-feedback synchronization of the electronic model of the particle-in-a-box system is proposed. This circuit allows a robust and simple electronic emulation of the mechanical behavior of the collisions of a particle inside a box, exhibiting rich chaotic behavior. The required nonlinearity to emulate the box walls is implemented in a simple way when compared with other analog electronic chaotic circuits. A master/slave synchronization of two circuits exhibiting a rich chaotic behavior demonstrates the potentiality of this system to secure communication. In this system, binary data stream information modulates the bifurcation parameter of the particle-in-a-box electronic circuit in the transmitter. In the receiver circuit, this parameter is estimated using Pecora-Carroll synchronization and error-feedback synchronization. The performance of the demodulation process is verified through the eye pattern technique applied on the recovered bit stream. During the demodulation process, the error-feedback synchronization presented better performance compared with the Pecora-Carroll synchronization. The application of the particle-in-a-box electronic circuit in a secure communication system is demonstrated.