137 resultados para T2DM
Resumo:
Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.
Resumo:
OBJECTIVE To assess Spanish and Portuguese patients' and physicians' preferences regarding type 2 diabetes mellitus (T2DM) treatments and the monthly willingness to pay (WTP) to gain benefits or avoid side effects. METHODS An observational, multicenter, exploratory study focused on routine clinical practice in Spain and Portugal. Physicians were recruited from multiple hospitals and outpatient clinics, while patients were recruited from eleven centers operating in the public health care system in different autonomous communities in Spain and Portugal. Preferences were measured via a discrete choice experiment by rating multiple T2DM medication attributes. Data were analyzed using the conditional logit model. RESULTS Three-hundred and thirty (n=330) patients (49.7% female; mean age 62.4 [SD: 10.3] years, mean T2DM duration 13.9 [8.2] years, mean body mass index 32.5 [6.8] kg/m(2), 41.8% received oral + injected medication, 40.3% received oral, and 17.6% injected treatments) and 221 physicians from Spain and Portugal (62% female; mean age 41.9 [SD: 10.5] years, 33.5% endocrinologists, 66.5% primary-care doctors) participated. Patients valued avoiding a gain in bodyweight of 3 kg/6 months (WTP: €68.14 [95% confidence interval: 54.55-85.08]) the most, followed by avoiding one hypoglycemic event/month (WTP: €54.80 [23.29-82.26]). Physicians valued avoiding one hypoglycemia/week (WTP: €287.18 [95% confidence interval: 160.31-1,387.21]) the most, followed by avoiding a 3 kg/6 months gain in bodyweight and decreasing cardiovascular risk (WTP: €166.87 [88.63-843.09] and €154.30 [98.13-434.19], respectively). Physicians and patients were willing to pay €125.92 (73.30-622.75) and €24.28 (18.41-30.31), respectively, to avoid a 1% increase in glycated hemoglobin, and €143.30 (73.39-543.62) and €42.74 (23.89-61.77) to avoid nausea. CONCLUSION Both patients and physicians in Spain and Portugal are willing to pay for the health benefits associated with improved diabetes treatment, the most important being to avoid hypoglycemia and gaining weight. Decreased cardiovascular risk and weight reduction became the third most valued attributes for physicians and patients, respectively.
Resumo:
Unlike the adjustable gastric banding procedure (AGB), Roux-en-Y gastric bypass surgery (RYGBP) in humans has an intriguing effect: a rapid and substantial control of type 2 diabetes mellitus (T2DM). We performed gastric lap-band (GLB) and entero-gastro anastomosis (EGA) procedures in C57Bl6 mice that were fed a high-fat diet. The EGA procedure specifically reduced food intake and increased insulin sensitivity as measured by endogenous glucose production. Intestinal gluconeogenesis increased after the EGA procedure, but not after gastric banding. All EGA effects were abolished in GLUT-2 knockout mice and in mice with portal vein denervation. We thus provide mechanistic evidence that the beneficial effects of the EGA procedure on food intake and glucose homeostasis involve intestinal gluconeogenesis and its detection via a GLUT-2 and hepatoportal sensor pathway.
Resumo:
BACKGROUND AND AIMS: Moderate alcohol consumption has been shown to decrease the risk of type 2 diabetes (T2DM), but whether this association is also valid for impaired fasting glucose (IFG) is less well known. We aimed at assessing the impact of alcohol consumption and of type of alcoholic beverage on the incidence of T2DM and T2DM + IFG. METHODS AND RESULTS: As many as 4765 participants (2613 women, mean age 51.7 ± 10.5 years) without T2DM at baseline and followed for an average of 5.5 years. The association between alcohol consumption, type of alcoholic beverage and outcomes was assessed after adjustment for a validated T2DM risk score. During follow-up 284 participants developed T2DM and 643 developed IFG. On bivariate analysis, alcohol consumption was positively associated with the risk of developing T2DM or T2DM + IFG. Moderate (14-27 units/week) alcohol consumption tended to be associated with a lower risk of T2DM, but no protective effect was found for T2DM + IFG. Multivariable-adjusted odds ratio (OR) and (95% confidence interval) for T2DM: 0.89 (0.65-1.22), 0.66 (0.42-1.03) and 1.63 (0.93-2.84) for 1-13, 14-27 and 28 + units/week, respectively (p for quadratic trend < 0.005). For T2DM + IFG, the corresponding ORs were 1.09 (0.90-1.32), 1.33 (1.02-1.74) and 1.54 (0.99-2.39), respectively, p for trend = 0.03. No specific effect of alcoholic beverage (wine, beer or spirits) was found for T2DM or for T2DM + IFG. CONCLUSION: Moderate alcohol consumption is associated with a reduced risk of developing T2DM, but not of developing T2DM + IFG. No specific effect of type of alcoholic beverage was found.
Resumo:
In the nervous system, NMDA receptors (NMDARs) participate in neurotransmission and modulate the viability of neurons. In contrast, little is known about the role of NMDARs in pancreatic islets and the insulin-secreting beta cells whose functional impairment contributes to diabetes mellitus. Here we found that inhibition of NMDARs in mouse and human islets enhanced their glucose-stimulated insulin secretion (GSIS) and survival of islet cells. Further, NMDAR inhibition prolonged the amount of time that glucose-stimulated beta cells spent in a depolarized state with high cytosolic Ca(2+) concentrations. We also noticed that, in vivo, the NMDAR antagonist dextromethorphan (DXM) enhanced glucose tolerance in mice, and that in vitro dextrorphan, the main metabolite of DXM, amplified the stimulatory effect of exendin-4 on GSIS. In a mouse model of type 2 diabetes mellitus (T2DM), long-term treatment with DXM improved islet insulin content, islet cell mass and blood glucose control. Further, in a small clinical trial we found that individuals with T2DM treated with DXM showed enhanced serum insulin concentrations and glucose tolerance. Our data highlight the possibility that antagonists of NMDARs may provide a useful adjunct treatment for diabetes.
Resumo:
284 million people worldwide suffered from type 2 diabetes mellitus (T2DM) in 2010, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy (DPN). Although DPN is the most common complication of diabetes mellitus and the leading cause of non-traumatic amputations its pathophysiology is still poorly understood. To get more insight into the molecular mechanism underlying DPN in T2DM, I used a rodent model of T2DM, the db/db mice.¦ln vivo electrophysiological recordings of diabetic animals indicated that in addition to reduced nerve conduction velocity db/db mice also present increased nerve excitability. Further ex vivo evaluation of the electrophysiological properties of db/db nerves clearly established a presence of the peripheral nerve hyperexcitability (PNH) phenotype in diabetic animals. Using pharmacological inhibitors we demonstrated that PNH is mostly mediated by the decreased activity of Kv1 channels. ln agreement with these data 1 observed that the diabetic condition led to a reduced presence of the Kv1.2 subunits in juxtaparanodal regions of db/db peripheral nerves whereas its mANA and protein expression levels were not affected. Lmportantly, I confirmed a loss of juxtaparanodal Kv1.2 subunits in nerve biopsies from type 2 diabetic patients. Together these observations indicate that the type 2 diabetic condition leads to potassium-channel mediated changes of nerve excitability thus identifying them as potential drug targets to treat sorne of the DPN related symptoms.¦Schwann cells ensheath and isolate peripheral axons by the production of myelin, which consists of lipids and proteins in a ratio of 2:1. Peripheral myelin protein 2 (= P2, Pmp2 or FABP8) was originally described as one of the most abundant myelin proteins in the peripheral nervous system. P2, which is a member of the fatty acid binding protein (FABP) family, is a 14.8 kDa cytosolic protein expressed on the cytoplasmic side of compact myelin membranes. As indicated by their name, the principal role of FABPs is thought to be the binding and transport of fatty acids.¦To study its role in myelinating glial cells I have recently generated a complete P2 knockout mouse model (P2-/-). I confirmed the loss of P2 in the sciatic nerve of P2-/- mice at the mRNA and protein level. Electrophysiological analysis of the adult (P56) mutant mice revealed a mild but significant reduction in the motor nerve conduction velocity. lnterestingly, this functional change was not accompanied by any detectable alterations in general myelin structure. However, I have observed significant alterations in the mRNA expression level of other FABPs, predominantly FABP9, in the PNS of P2-/- mice as compared to age-matched P2+/+ mice indicating a role of P2 in the glial myelin lipid metabolism.¦Le diabète de type 2 touche 284 million de personnes dans le monde en 2010 et son évolution conduit dans la moitié des cas à une neuropathie périphérique diabétique. Bien que la neuropathie périphérique soit la complication la plus courante du diabète pouvant conduire jusqu'à l'amputation, sa physiopathologie est aujourd'hui encore mal comprise. Dans le but d'améliorer les connaissances moléculaires expliquant les mécanismes de la neuropathie liée au diabète de type 2, j'ai utilisé un modèle murin du diabète de type 2, les souris db/db.¦ln vivo, les enregistrements éléctrophysiologiques des animaux diabétiques montrent qu'en plus d'une diminution de la vitesse de conduction nerveuse, les souris db/db présentent également une augmentation de l'excitabilité nerveuse. Des mesures menées Ex vivo ont montré l'existence d'un phénotype d'hyperexcitabilité sur les nerfs périphériques isolés d'animaux diabétiques. Grâce à l'utilisation d'inhibiteurs pharmacologiques, nous avons pu démontrer que l'hyperexcitabilité démontrée était due à une réduction d'activité des canaux Kv1. En accord avec ces données, j'ai observé qu'une situation de diabète conduisait à une diminution des canaux Kv1.2 aux régions juxta-paranodales des nerfs périphériques db/db, alors que l'expression du transcrit et de la protéine restait stable. J'ai également confirmé l'absence de canaux Kv1.2 aux juxta-paranoeuds de biopsies de nerfs de patients diabétiques. L'ensemble de ces observations montrent que les nerfs périphériques chez les patients atteints de diabète de type 2 est due à une diminution des canaux potassiques rapides juxtaparanodaux les identifiant ainsi comme des cibles thérapeutiques potentielles.¦Les cellules de Schwann enveloppent et isolent les axones périphériques d'une membrane spécialisée, la myéline, composée de deux fois plus de lipides que de protéines. La protéine P2 (Pmp2 "peripheral myelin protein 2" ou FABP8 "fatty acid binding protein") est l'une des protéines les plus abondantes au système nerveux périphérique. P2 appartient à la famille de protéines FABP liant et transportant les acides gras et est une protéine cytosolique de 14,8 kDa exprimée du côté cytoplasmique de la myéline compacte.¦Afin d'étudier le rôle de P2 dans les cellules de Schwann myélinisantes, j'ai généré une souris knockout (P2-/-). Après avoir validé l'absence de transcrit et de protéine P2 dans les nerfs sciatiques P2-/-, des mesures électrophysiologiques ont montré une réduction modérée mais significative de la vitesse de conduction du nerf moteur périphérique. Il est important de noter que ces changements fonctionnels n'ont pas pu être associés à quelconque changement dans la structure de la myéline. Cependant, j'ai observé dans les nerfs périphériques P2-/-, une altération significative du niveau d'expression d'ARNm d'autres FABPs et en particulier FABP9. Ce dernier résultat démontre l'importance du rôle de la protéine P2 dans le métabolisme lipidique de la myéline.
Resumo:
INTRODUCTION: Diabetic patients are at high risk for coronary artery disease (CAD), which is the leading cause of death in this population. The Swiss Society of Endocrinology-Diabetology (SSED) recommends CAD screening for diabetic patients with > or = 2 additional cardiovascular risk factors (CVRF), by stress echocardiography (SE) or myocardial perfusion imaging (MPI). The aim of this study was to assess the application of these guidelines and the treatment of CVRF in the diabetes outpatient clinics of the five Swiss University Hospitals. METHODS: The study was initiated in Lausanne and the study questionnaires were circulated to the endocrinologists of the five Swiss University Hospitals. Practitioners were asked to include consecutive patients attending the diabetes outpatient clinics over one month. Prevalence of CAD, screening methods for CAD, prevalence of CVRF, biological analyses over the last 6 months and medical therapy were recorded. RESULTS: A total of 302 subjects were included. The mean age was 53 +/- 14 years, 68% had type 2 diabetes, 27% type 1 and 5% other types. Among T2DM with > or = 2 CVRF, 45% were screened for CAD according to SSED guidelines. In T2DM 25% had blood pressure < or = 130/80 mm Hg, 15% a lipid profile within target, 23% HbA1c < or = 7.0%. Overall, 2% achieved all 3 targets. CONCLUSIONS: Only 45% of T2DM with > or = 2 CVRF were screened for CAD according to SSED guidelines and 2% of T2DM had proper control over all CVRF. Efforts are still necessary to improve CAD prevention and screening of diabetic patients in Swiss University Hospitals.
Resumo:
We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information.
Resumo:
AIM: To assess whether blockade of the renin-angiotensin system (RAS), a recognized strategy to prevent the progression of diabetic nephropathy, affects renal tissue oxygenation in type 2 diabetes mellitus (T2DM) patients. METHODS: Prospective randomized 2-way cross over study; T2DM patients with (micro)albuminuria and/or hypertension underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) at baseline, after one month of enalapril (20mgqd), and after one month of candesartan (16mgqd). Each BOLD-MRI was performed before and after the administration of furosemide. The mean R2* (=1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. RESULTS: Twelve patients (mean age: 60±11 years, eGFR: 62±22ml/min/1.73m(2)) completed the study. Neither chronic enalapril nor candesartan intake modified renal cortical or medullary R2* levels. Furosemide significantly decreased cortical and medullary R2* levels suggesting a transient increase in renal oxygenation. Medullary R2* levels correlated positively with urinary sodium excretion and systemic blood pressure, suggesting lower renal oxygenation at higher dietary sodium intake and blood pressure; cortical R2* levels correlated positively with glycemia and HbA1c. CONCLUSION: RAS blockade does not seem to increase renal tissue oxygenation in T2DM hypertensive patients. The response to furosemide and the association with 24h urinary sodium excretion emphasize the crucial role of renal sodium handling as one of the main determinants of renal tissue oxygenation.
Resumo:
The aim was to examine the capacity of commonly used type 2 diabetes mellitus (T2DM) risk scores to predict overall mortality. The US-based NHANES III (n = 3138; 982 deaths) and the Swiss-based CoLaus study (n = 3946; 191 deaths) were used. The predictive value of eight T2DM risk scores regarding overall mortality was tested. The Griffin score, based on few self-reported parameters, presented the best (NHANES III) and second best (CoLaus) predictive capacity. Generally, the predictive capacity of scores based on clinical (anthropometrics, lifestyle, history) and biological (blood parameters) data was not better than of scores based solely on clinical self-reported data. T2DM scores can be validly used to predict mortality risk in general populations without diabetes. Comparison with other scores could further show whether such scores also suit as a screening tool for quick overall health risk assessment.
Resumo:
AIMS: Smoking cessation has been suggested to increase the short-term risk of type 2 diabetes mellitus (T2DM). This study aimed at assessing the association between smoking cessation and incidence of T2DM and impaired fasting glucose (IFG). METHODS: Data from participants in the CoLaus study, Switzerland, aged 35-75 at baseline and followed for 5.5years were used. Participants were classified as smokers, recent (≤5years), long-term (>5years) quitters, and non-smokers at baseline. Outcomes were IFG (fasting serum glucose (FSG) 5.6-6.99mmol/l) and T2DM (FSG ≥7.0mmol/l and/or treatment) at follow up. RESULTS: 3,166 participants (63% women) had normal baseline FSG, of whom 26.7% were smokers, 6.5% recent quitters, and 23.5% long-term quitters. During follow-up 1,311 participants (41.4%) developed IFG (33.6% women, 54.7% men) and 47 (1.5%) developed T2DM (1.1% women, 2.1% men). Former smokers did not have statistically significant increased odds of IFG compared with smokers after adjustment for age, education, physical activity, hypercholesterolemia, hypertension and alcohol intake, with OR of 1.29 [95% confidence interval 0.94-1.76] for recent quitters and 1.03 [0.84-1.27] for long-term quitters. Former smokers did not have significant increased odds of T2DM compared with smokers with multivariable-adjusted OR of 1.53 [0.58-4.00] for recent quitters and 0.64 [0.27-1.48] for long-term quitters. Adjustment for body-mass index and waist circumference attenuated the association between recent quitting and IFG (OR 1.07 [0.78-1.48]) and T2DM (OR 1.28 [0.48-3.40]. CONCLUSION: In this middle-aged population, smoking cessation was not associated with an increased risk of IFG or T2DM.
Resumo:
NlmCategory="UNASSIGNED">Preserving β cell function during the development of obesity and insulin resistance would limit the worldwide epidemic of type 2 diabetes (T2DM). Endoplasmic reticulum (ER) calcium (Ca(2+)) depletion induced by saturated free fatty acids and cytokines causes β cell ER stress and apoptosis, but the molecular mechanisms behind these phenomena are still poorly understood. Here, we demonstrate that palmitate-induced sorcin (SRI) down-regulation, and subsequent increases in glucose-6-phosphatase catalytic subunit-2 (G6PC2) levels contribute to lipotoxicity. SRI is a calcium sensor protein involved in maintaining ER Ca(2+) by inhibiting ryanodine receptor activity and playing a role in terminating Ca(2+)-induced Ca(2+) release. G6PC2, a GWAS gene associated with fasting blood glucose, is a negative regulator of glucose-stimulated insulin secretion (GSIS). High fat feeding in mice and chronic exposure of human islets to palmitate decreases endogenous SRI expression while levels of G6PC2 mRNA increase. Sorcin null mice are glucose intolerant, with markedly impaired GSIS and increased expression of G6pc2. Under high fat diet, mice overexpressing SRI in the β cell display improved glucose tolerance, fasting blood glucose and GSIS, whereas G6PC2 levels are decreased and cytosolic and ER Ca(2+) are increased in transgenic islets. SRI may thus provide a target for intervention in T2DM.
Resumo:
An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.
Resumo:
Our objective was to evaluate the association of rs12255372 in theTCF7L2 gene with type 2 diabetes mellitus (T2DM) in the world population. We carried out a survey of the literature about the effect of rs12255372 on genetic susceptibility to T2DM by consulting PubMed, the Cochrane Library, and Embase from 2006 to 2012, and then performed a meta-analysis of all the studies in order to evaluate the association between rs12255372 and T2DM. A total of 33 articles including 42 studies (with 34,076 cases and 36,192 controls) were confirmed to be eligible and were included in the final meta-analysis: 6 studies conducted on Europeans, 14 on Caucasians, 17 on Asians, 2 on Africans, and 3 on Americans. Overall, the effect size was as follows: for the variant allele T (OR = 1.387, 95%CI = 1.351-1.424), for the TT genotype (OR = 1.933, 95%CI = 1.815-2.057), for the GT genotype (OR = 1.363, 95%CI = 1.315-1.413), for the dominant model (OR = 1.425, 95%CI = 1.344-1.510), and for the recessive model (OR = 1.659, 95%CI = 1.563-1.761). In summary, by pooling all available qualified data from genetic studies on rs12255372 and T2DM, we have confirmed that rs12255372 is significantly associated with susceptibility to T2DM in the global population.
Resumo:
Recent animal studies have indicated that overexpression of the elongation of long-chain fatty acids family member 6 (Elovl6) gene can cause insulin resistance and β-cell dysfunction. These are the major factors involved in the development of type 2 diabetes mellitus (T2DM). To identify the relationship between single nucleotide polymorphisms (SNP) ofELOVL6 and T2DM pathogenesis, we conducted a case-control study of 610 Han Chinese individuals (328 newly diagnosed T2DM and 282 healthy subjects). Insulin resistance and islet first-phase secretion function were evaluated by assessment of insulin resistance in a homeostasis model (HOMA-IR) and an arginine stimulation test. Three SNPs of the ELOVL6 gene were genotyped with polymerase chain reaction-restriction fragment length polymorphism, with DNA sequencing used to confirm the results. Only genotypes TT and CT of the ELOVL6 SNP rs12504538 were detected in the samples. Genotype CC was not observed. The T2DM group had a higher frequency of the C allele and the CT genotype than the control group. Subjects with the CT genotype had higher HOMA-IR values than those with the TT genotype. In addition, no statistical significance was observed between the genotype and allele frequencies of the control and T2DM groups for SNPs rs17041272 and rs6824447. The study indicated that the ELOVL6 gene polymorphism rs12504538 is associated with an increased risk of T2DM, because it causes an increase in insulin resistance.