986 resultados para T-CELL TOLERANCE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Anti-CD154 (MR1) monoclonal antibody (mAb) and rapamycin (RAPA) treatment both improve survival of rat-to-mouse islet xenograft. The present study investigated the effect of combined RAPA/MR1 treatment on rat-to-mouse islet xenograft survival and analyzed the role of CD4(+)CD25(+)Foxp3(+) T regulatory cells (Treg) in the induction and maintenance of the ensuing tolerance. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 mice were treated with MR1/RAPA and received additional monoclonal anti-IL2 mAb or anti CD25 mAb either early (0-28 d) or late (100-128 d) post-transplantation. Treg were characterised in the blood, spleen, draining lymph nodes and within the graft of tolerant and rejecting mice by flow cytometry and immunohistochemistry. Fourteen days of RAPA/MR1 combination therapy allowed indefinite islet graft survival in >80% of the mice. Additional administration of anti-IL-2 mAb or depleting anti-CD25 mAb at the time of transplantation resulted in rejection (100% and 89% respectively), whereas administration at 100 days post transplantation lead to lower rejection rates (25% and 40% respectively). Tolerant mice showed an increase of Treg within the graft and in draining lymph nodes early post transplantation, whereas 100 days post transplantation no significant increase of Treg was observed. Rejecting mice showed a transient increase of Treg in the xenograft and secondary lymphoid organs, which disappeared within 7 days after rejection. CONCLUSIONS/SIGNIFICANCES: These results suggest a critical role for Treg in the induction phase of tolerance early after islet xenotransplantation. These encouraging data support the need of developing further Treg therapy for overcoming the species barrier in xenotransplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: This study aimed to evaluate the efficacy and toxicity of radioimmunotherapy (RIT) in recurrent lymphoma after hematopoietic stem cell transplantation (HSCT). METHODS: We reviewed 9 patients, 7 with follicular lymphoma (DLBCL), 1 with mantle cell lymphoma (MCL), and 1 with diffuse large B-cell lymphoma treated with Y-ibritumomab tiuxetan 6 to 140 months after HSCT. Patients underwent In-ibritumomab scintigraphy and were treated 1 week later with standard 14.8 MBq/kg (n = 4) or 11.1 MBq/kg (n = 4) Y-ibritumomab. One patient who had allo-HSCT had reduced activity (70%) treatment. RESULTS: Among the 7 FL patients, we observed complete response (CR) in 2 patients and partial response (PR) in 5 patients. One patient with CR relapsed after 15 months; the other persisted 43.5 months after RIT. Of 5 patients with PR, 3 relapsed between 13 and 17 months; 1 persisted until unrelated death at 11.5 months. The fifth patient with PR received adoptive immunotherapy and improved to metabolic (FDG-PET) CR that persists 45.5 and 41 months after Y-ibritumomab and immunotherapy, respectively. Patients with MCL and DLBCL progressed or experienced stabilization (5 months), respectively. Six patients had grade 1 to 3 bone marrow (BM) toxicity and recovered within 3 months. Three patients having Y-ibritumomab 6, 14, and 24 months after HSCT experienced grade 4 BM toxicity. One of them (RIT 24 months after HSCT) recovered after 3 months, another delayed after 9 months, and the third patient only partially recovered, eventually developed myelodysplasia, and was allografted. CONCLUSIONS: Radioimmunotherapy after HSCT is an effective rescue therapy in FL. However, BM toxicity may be important; 3 of 8 patients treated with standard Y-ibritumomab activity experienced grade 4 BM toxicity, with incomplete recovery 3 months after RIT in 2 patients, both treated early (6 and 14 months) after HSCT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The azole antifungal fluconazole possesses only fungistatic activity in Candida albicans and, therefore, this human pathogen is tolerant to this agent. However, tolerance to fluconazole can be inhibited when C. albicans is exposed to fluconazole combined with the immunosuppressive drug cyclosporin A, which is known to inhibit calcineurin activity in yeast. A mutant lacking both alleles of a gene encoding the calcineurin A subunit (CNA) lost viability in the presence of fluconazole, thus making calcineurin essential for fluconazole tolerance. Consistent with this observation, tolerance to fluconazole was modulated by calcium ions or by the expression of a calcineurin A derivative autoactivated by the removal of its C-terminal inhibitory domain. Interestingly, CNA was also essential for tolerance to other antifungal agents (voriconazole, itraconazole, terbinafine, amorolfine) and to several other metabolic inhibitors (caffeine, brefeldin A, mycophenolic acid, fluphenazine) or cell wall-perturbing agents (SDS, calcofluor white, Congo red), thus indicating that the calcineurin pathway plays an important role in the survival of C. albicans in the presence of external growth inhibitors. Several genes, including PMC1, a vacuolar calcium P-type ATPase, were regulated in a calcineurin- and fluconazole-dependent manner. However, PMC1 did not play a direct role in the survival of C. albicans when exposed to fluconazole. In addition to these different properties, calcineurin was found to affect colony morphology in several media known to modulate the C. albicans dimorphic switch. In particular, calcineurin was found to be essential for C. albicans viability in serum-containing media. Finally, calcineurin was found to be necessary for the virulence of C. albicans in a mice model of infection, thus making calcineurin an important element for adequate adaptation to the conditions of the host environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we explore the possibility of improving, by genetic engineering, the resistance of insulin-secreting cells to the metabolic and inflammatory stresses that are anticipated to limit their function and survival when encapsulated and transplanted in a type 1 diabetic environment. We show that transfer of the Bcl-2 antiapoptotic gene, and of genes specifically interfering with cytokine intracellular signaling pathways, greatly improves resistance of the cells to metabolic limitations and inflammatory stresses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research aimed to characterize the tolerance to flooding and alterations in pectic and hemicellulose fractions from mesocotyl of maize tolerant to flooding when submitted to hypoxia. In order to characterize tolerance seeds from maize cultivars Saracura BRS-4154 and BR 107 tolerant and sensitive to low oxygen levels, respectively, were set to germinate. Plantlet survival was evaluated during five days after having been submitted to hypoxia. After fractionation with ammonium oxalate 0.5% (w/v) and KOH 2M and 4M, Saracura BRS-4154 cell wall was obtained from mesocotyl segments with different damage intensities caused by oxygen deficiency exposure. The cell wall fractions were analyzed by gel filtration and gas chromatography, and also by Infrared Spectrum with Fourrier Transformation (FTIR). The hypoxia period lasting three days or longer caused cell lysis and in advanced stages plant death. The gelic profile from pectic, hemicellulose 2M and 4M fractions from samples with translucid and constriction zone showed the appearance of low molecular weight compounds, similar to glucose. The main neutral sugars in pectic and hemicellulose fractions were arabinose, xilose and mannose. The FTIR spectrum showed a gradual decrease in pectic substances from mesocotyl with normal to translucid and constriction appearance respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NKG2D is a multisubunit activation receptor that allows natural killer (NK) cells to detect and eliminate stressed, infected, and transformed host cells. However, the chronic exposure of NK cells to cell-bound NKG2D ligands has been shown to impair NKG2D function both in vitro and in vivo. Here we have tested whether continuous NKG2D engagement selectively impacted NKG2D function or whether heterologous NK cell activation pathways were also affected. We found that sustained NKG2D engagement induced cross-tolerization of several unrelated NK cell activation receptors. We show that receptors that activate NK cells via the DAP12/KARAP and DAP10 signaling adaptors, such as murine NKG2D and Ly49D, cross-tolerize preferentially NK cell activation pathways that function independent of DAP10/12, such as antibody-dependent cell-mediated cytotoxicity and missing-self recognition. Conversely, DAP10/12-independent pathways are unable to cross-tolerize unrelated NK cell activation receptors such as NKG2D or Ly49D. These data define a class of NK cell activation receptors that can tolerize mature NK cells. The reversible suppression of the NK cells' cytolytic function probably reduces the NK cells' efficacy to control endogenous and exogenous stress yet may be needed to limit tissue damage

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SUMMARY : The recognition by recipient T cells of the allograft major histocompatibility complex (MHC)mismatched antigens is the primary event that ultimately leads to rejection. In the transplantation setting, circulating alloreactive CD4+ T cells play a central role in the initiation and the coordination of the immune response and can initiate the rejection of an allograft via three distinct pathways: the direct, indirect and the recently described semi-direct pathway. However, the exact role of individual CD4+ T-cell subsets in the development of allograft rejection is not clearly defined. Furthermore, besides pathogenic effector T cells, a new subset of T cells with regulatory properties, the CD4+CD25+Foxp3+ (Treg) cells, has come under increased scrutiny over the last decade. The experiments presented in this thesis were designed to better define the phenotype and functional characteristics of CD4+ T-cell subsets and Treg cells in vitro and in vivo in a marine adoptive transfer and skin transplantation model. As Treg cells play a key role in the induction and maintenance of peripheral transplantation tolerance, we have explored whether donor-antigen specific Treg cells could be expanded in vitro. Here we describe a robust protocol for the ex-vivo generation and expansion of antigen-specific Treg cells, without loss of their characteristic phenotype and suppressive function. In our in vivo transplantation model, antigen-specific Treg cells induced donor-specific tolerance to skin allografts in lymphopenic recipients and significantly delayed skin graft rejection in wild-type mice in the absence of any other immunosuppression. Naïve and memory CD4+ T cells have distinct phenotypes, effector functions and in vivo homeostatsis, and thus may play different roles in anti-donor immunity after transplantation. We have analyzed in vitro and in vivo primary alloresponses of naïve and cross-reactive memory CD4+ T cells. We found that the CD4+CD45RBlo memory T-cell pool was heterogeneous and contained cells with regulatory potentials, both in the CD4+CD25+ and CD4+CD25- populations. CD4+ T cells capable of inducing strong primary alloreactive responses in vitro and rejection of a first allograft in vivo were mainly contained within the CD45RBhi naïve CD4+ T-cell compartment. Taken together, the work described in this thesis provides new insights into the mechanisms that drive allograft rejection or donor-specific transplantation tolerance. These results will help to optimise current clinical immunosuppressive regimens used after solid organ transplantation and design new immunotherapeutic strategies to prevent transplant rejection. RÉSUMÉ : ROLE DES SOUS-POPULATIONS DE CELLULES T DANS LE REJET DE GREFFE ET L'INDUCTION DE TOLERANCE EN TRANSPLANTATION La reconnaissance par les cellules T du receveur des alloantigènes du complexe majeur d'histocompatibilité (CMIT) présentés par une greffe allogénique, est le premier événement qui aboutira au rejet de l'organe greffé. Dans le contexte d'une transplantation, les cellules alloréactives T CD4+ circulantes jouent un rôle central dans l'initiation et la coordination de 1a réponse immune, et peuvent initier le rejet par 3 voies distinctes : la voie directe, indirecte et la voie servi-directe, plus récemment décrite. Toutefois, le rôle exact des sous-populations de cellules T CD4+ dans les différentes étapes menant au rejet d'une allogreffe n'est pas clairement établi. Par ailleurs, hormis les cellules T effectrices pathogéniques, une sous-population de cellules T ayant des propriétés régulatrices, les cellules T CD4+CD25+Foxp3+ (Treg), a été nouvellement décrite et est intensément étudiée depuis environ dix ans. Les expériences présentées dans cette thèse ont été planifiées afin de mieux définir le phénotype et les caractéristiques fonctionnels des sous-populations de cellules T CD4+ et des Treg in vitro et in vivo dans un modèle marin de transfert adoptif de cellules et de transplantation de peau. Comme les cellules Treg jouent un rôle clé dans l'induction et le maintien de la tolérance périphérique en transplantation, nous avons investigué la possibilité de multiplier in vitro des cellules Treg avec spécificité antigénique pour le donneur. Nous décrivons ici un protocole reproductible pour la génération et l'expansion ex-vivo de cellules Treg avec spécificité antigénique, sans perte de leur phénotype caractéristique et de leur fonction suppressive. Dans notre modèle in vivo de transplantation de peau, ces cellules Treg pouvaient induire une tolérance spécifique vis-à-vis du donneur chez des souris lymphopéniques, et, chez des souris normales non-lymphopéniques ces Treg ont permis de retarder significativement le rejet en l'absence de tout traitement immunosuppresseur. Les cellules T CD4+ naïves et mémoires se distinguent par leur phénotype, fonction effectrice et leur homéostasie in vivo, et peuvent donc moduler différemment la réponse immune contre le donneur après transplantation. Nous avons analysé in vitro et in vivo les réponses allogéniques primaires de cellules T CD4+ naïves et mémoires non-spécifiques (cross-réactives). Nos résultats ont montré que le pool de cellules T CD4+CD45RB'° mémoires était hétérogène et contenait des cellules avec un potentiel régulateur, aussi bien parmi la sous-population de cellules CD4+CD25+ que CD4+CD25+. Les cellules T CD4+ capables d'induire une alloréponse primaire intense in vitro et le rejet d'une première allogreffe in vivo étaient essentiellement contenues dans le pool de cellules T CD4+CD45RBhi naïves. En conclusion, le travail décrit dans cette thèse amène un nouvel éclairage sur les mécanismes responsables du rejet d'une allogreffe ou de l'induction de tolérance en transplantation. Ces résultats permettront d'optimaliser les traitements immunosuppresseurs utilisés en transplantation clinique et de concevoir des nouvelles stratégies irnmuno-thérapeutiques pour prévenir le rejet de greffe allogénique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Regulatory T cells (Tregs) are key players in controlling the development of airway inflammation. However, their role in the mechanisms leading to tolerance in established allergic asthma is unclear. OBJECTIVE: To examine the role of Tregs in tolerance induction in a murine model of asthma. METHODS: Ovalbumin (OVA) sensitized asthmatic mice were depleted or not of CD25(+) T cells by anti-CD25 PC61 monoclonal antibody (mAb) before intranasal treatment (INT) with OVA, then challenged with OVA aerosol. To further evaluate the respective regulatory activity of CD4(+)CD25(+) and CD4(+)CD25(-) T cells, both T cell subsets were transferred from tolerized or non-tolerized animals to asthmatic recipients. Bronchoalveolar lavage fluid (BALF), T cell proliferation and cytokine secretion were examined. RESULTS: Intranasal treatment with OVA led to increased levels of IL-10, TGF-beta and IL-17 in lung homogenates, inhibition of eosinophil recruitment into the BALF and antigen specific T cell hyporesponsiveness. CD4(+)CD25(+)Foxp3(+) T cells were markedly upregulated in lungs and suppressed in vitro and in vivo OVA-specific T cell responses. Depletion of CD25(+) cells before OVA INT severely hampered tolerance induction as indicated by a strong recruitment of eosinophils into BALF and a vigorous T cell response to OVA upon challenge. However, the transfer of CD4(+)CD25(-) T cells not only suppressed antigen specific T cell responsiveness but also significantly reduced eosinophil recruitment as opposed to CD4(+)CD25(+) T cells. As compared with control mice, a significantly higher proportion of CD4(+)CD25(-) T cells from OVA treated mice expressed mTGF-beta. CONCLUSION: Both CD4(+)CD25(+) and CD4(+)CD25(-) T cells appear to be essential to tolerance induction. The relationship between both subsets and the mechanisms of their regulatory activity will have to be further analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oral tolerance can be induced in some mouse strains by gavage or spontaneous ingestion of dietary antigens. In the present study, we determined the influence of aging and oral tolerance on the secretion of co-stimulatory molecules by dendritic cells (DC), and on the ability of DC to induce proliferation and cytokine secretion by naive T cells from BALB/c and OVA transgenic (DO11.10) mice. We observed that oral tolerance could be induced in BALB/c mice (N = 5 in each group) of all ages (8, 20, 40, 60, and 80 weeks old), although a decline in specific antibody levels was observed in the sera of both tolerized and immunized mice with advancing age (40 to 80 weeks old). DC obtained from young, adult and middle-aged (8, 20, and 40 weeks old) tolerized mice were less efficient (65, 17 and 20%, respectively) than DC from immunized mice (P < 0.05) in inducing antigen-specific proliferation of naive T cells from both BALB/c and DO11.10 young mice, or in stimulating IFN-g, IL-4 and IL-10 production. However, TGF-β levels were significantly elevated in co-cultures carried out with DC from tolerant mice (P < 0.05). DC from both immunized and tolerized old and very old (60 and 80 weeks old) mice were equally ineffective in inducing T cell proliferation and cytokine production (P < 0.05). A marked reduction in CD86+ marker expression was observed in DC isolated from both old and tolerized mice (75 and 50%, respectively). The results indicate that the aging process does not interfere with the establishment of oral tolerance in BALB/c mice, but reduces DC functions, probably due to the decline of the expression of the CD86 surface marker.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrocatalysis of CO tolerance of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C at a PEM fuel cell anode has been investigated using single cell polarization and online electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), in situ X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO(2) start at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particulary for PtFe/C, this leading to a weakening of the Pt-CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H(2)/CO, the formation of CO(2) is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transplanted individuals in operational tolerance (OT) maintain long-term stable graft function after completely stopping immunosuppression. Understanding the mechanisms involved in OT can provide valuable information about pathways to human transplantation tolerance. Here we report that operationally tolerant individuals display quantitative and functional preservation of the B-c ell compartment in renal transplantation. OT exhibited normal numbers of circulating total B cells, naive, memory and regulatory B cells (Bregs) as well as preserved B-cell receptor repertoire, similar to healthy individuals. In addition, OT also displayed conserved capacity to activate the cluster of differentiation 40 (CD40)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in Bregs, in contrast, with chronic rejection. Rather than expansion or higher activation, we show that the preservation of the B-cell compartment favors OT. Online address: http://www.molmed.org doi: 10.2119/molmed.2011.00281

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dendritic epidermal T cells (DETC) comprise a unique population of T cells that reside in mouse epidermis and whose function remains unclear. Most DETC express a $\gamma\delta$ TCR, although some, including our DETC line, AU16, express an $\alpha\beta$ TCR. Additionally, AU16 cells express CD3, Thy-1, CD45, CD28, B7, and AsGM-1. Previous studies in our laboratory demonstrated that hapten-conjugated AU16 could induce specific immunologic tolerance in vivo and inhibit T cell proliferation in vitro. Both these activities are antigen-specific, and the induction of tolerance is non-MHC-restricted. In addition, AU16 cells are cytotoxic to a number of tumor cell lines in vitro. These studies suggested a role for these cells in immune surveillance. The purpose of my studies was to test the hypothesis that these functions of DETC (tolerance induction, inhibition of T cell proliferation, and tumor cell killing) were mediated by a cytotoxic mechanism. My specific aims were (1) to determine whether AU16 could prevent or delay tumor growth in vivo; and (2) to determine the mechanism whereby AU16 induce tolerance, using an in vitro proliferation assay. I first showed that AU16 cells killed a variety of skin tumor cell lines in vitro. I then demonstrated that they prevented melanoma growth in C3H mice when both cell types were mixed immediately prior to intradermal (i.d.) injection. Studies using the in vitro proliferation assay confirmed that DETC inhibit proliferation of T cells stimulated by hapten-bearing, antigen-presenting cells (FITC-APC). To determine which cell was the target, $\gamma$-irradiated, hapten-conjugated AU16 were added to the proliferation assay on d 4. They profoundly inhibited the proliferation of naive T cells to $\gamma$-irradiated, FITC-APC, as measured by ($\sp3$H) TdR uptake. This result strongly suggested that the T cell was the target of the AU16 activity because no APC were present by d 4 of the in vitro culture. In contrast, the addition of FITC-conjugated splenic T cells (SP-T) or lymph node T cells (LN-T) was less inhibitory. Preincubation of the T cells with FITC-AU16 cells for 24 h, followed by removal of the AU16 cells, completely inhibited the ability of the T cells to proliferate in response to FITC-APC, further supporting the conclusion that the T cell was the target of the AU16. Finally, AU16 cells were capable of killing a variety of activated T cells and T cell lines, arguing that the mechanism of proliferation inhibition, and possibly tolerance induction is one of cytotoxicity. Importantly, $\gamma\delta$ TCR$\sp+$ DETC behaved, both in vivo and in vitro like AU16, whereas other T cells did not. Therefore, these results are consistent with the hypothesis that AU16 cells are true DETC and that they induce tolerance by killing T cells that are antigen-activated in vivo. ^