954 resultados para Synaptic Vesicle Endocytosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ca2+-dependent synaptic vesicle-recycling pathway emanating from the plasma membrane adjacent to the dense body at the active zone has been demonstrated by blocking pinch-off of recycling membrane by using the Drosophila mutant, shibire. Exposure of wild-type Drosophila synapses to low Ca2+/high Mg2+ saline is shown here to block this active zone recycling pathway at the stage in which invaginations of the plasma membrane develop adjacent to the dense body. These observations, in combination with our previous demonstration that exposure to high Ca2+ causes “docked” vesicles to accumulate in the identical location where active zone endocytosis occurs, suggest the possibility that a vesicle-recycling pathway emanating from the active zone may exist that is stimulated by exposure to elevated Ca2+, thereby causing an increase in vesicle recycling, and is suppressed by exposure to low Ca2+ saline, thereby blocking newly forming vesicles at the invagination stage. The presence of a Ca2+-dependent endocytotic pathway at the active zone opens up the following possibilities: (i) electron microscopic omega-shaped images (and their equivalent, freeze fracture dimples) observed at the active zone adjacent to the dense body could represent endocytotic images (newly forming vesicles) rather than exocytotic images; (ii) vesicles observed attached to the plasma membrane adjacent to the dense body could represent newly formed vesicles rather than vesicles “docked” for release of transmitter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stoned locus in Drosophila encodes two proteins StonedA (STNA) and StonedB (STNB), both of which have been suggested to act as adaptins in mediating synaptic vesicle recycling. A combination of immunological, genetic and biochemical studies have shown an interaction of STNA and STNB with the C2B domain of Synaptotagmin-I (SYT-1), an integral synaptic vesicle protein that mediates Ca2+-dependent exocytosis, as well as endocytosis. The C2B domain of SYT-1 contains an AP-2 binding site that controls the size of recycled vesicles, and a C-terminal tryptophan-containing motif that acts as an internalization signal. Investigation of SYT-1 mutations in Drosophila has shown that altering the Ca2+ binding region of the C2B domain, results in a reduction in the rate of vesicle recycling, implicating this region in SYT-I endocytosis. In this poster, we report the molecular dissection of the interactions between the STNA and STNB proteins and the C2B domain of SYT-1. Deletion of the AP-2 binding site decreased the binding of both STNA and STNB. However, C-terminal deletions of the C2B domain significantly increased STNB binding. In contrast, the same C-terminal deletions reduced the affinity of the C2B domain for STNA. The possible interactions of both STNB and STNA with the Ca2+ binding region of SYT-1 will be also investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient synaptic vesicle membrane recycling is one of the key factors required to sustain neurotransmission. We investigated potential differences in the compensatory endocytic machineries in two glutamatergic synapses with phasic and tonic patterns of activity in the lamprey spinal cord. Post-embedding immunocytochemistry demonstrated that proteins involved in synaptic vesicle recycling, including dynamin, intersectin, and synapsin, occur at higher levels (labeling per vesicle) in tonic dorsal column synapses than in phasic reticulospinal synapses. Synaptic vesicle protein 2 occurred at similar levels in the two types of synapse. After challenging the synapses with high potassium stimulation for 30 min the vesicle pool in the tonic synapse was maintained at a normal level, while that in the phasic synapse was partly depleted along with expansion of the plasma membrane and accumulation of clathrin-coated intermediates at the periactive zone. Thus, our results indicate that an increased efficiency of the endocytic machinery in a synapse may be one of the factors underlying the ability to sustain neurotransmission at high rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this thesis was to apply the techniques of the atomic force microscope (AFM) to biological samples, namely lipid-based systems. To this end several systems with biological relevance based on self-assembly, such as a solid-supported membrane (SSM) based sensor for transport proteins, a bilayer of the natural lipid extract from an archaebacterium, and synaptic vesicles, were investigated by the AFM. For the characterization of transport proteins with SSM-sensors proteoliposomes are adsorbed that contain the analyte (transport protein). However the forces governing bilayer-bilayer interactions in solution should be repulsive under physiological conditions. I investigated the nature of the interaction forces with AFM force spectroscopy by mimicking the adsorbing proteoliposome with a cantilever tip, which was functionalized with charged alkane thiols. The nature of the interaction is indeed repulsive, but the lipid layers assemble in stacks on the SSM, which expose their unfavourable edges to the medium. I propose a model by which the proteoliposomes interact with these edges and fuse with the bilayer stacks, so forming a uniform layer on the SSM. Furthermore I characterized freestanding bilayers from a synthetic phospholipid with a phase transition at 41°C and from a natural lipid extract of the archaebacterium Methanococcus jannaschii. The synthetic lipid is in the gel-phase at room temperature and changes to the fluid phase when heated to 50°C. The bilayer of the lipid extract shows no phase transition when heated from room temperature to the growth temperature (~ 50°C) of the archeon. Synaptic vesicles are the containers of neurotransmitter in nerve cells and the synapsins are a family of extrinsic membrane proteins, that are associated with them, and believed to control the synaptic vesicle cycle. I used AFM imaging and force spectroscopy together with dynamic light scattering to investigate the influence of synapsin I on synaptic vesicles. To this end I used native, untreated synaptic vesicles and compared them to synapsin-depleted synaptic vesicles. Synapsin-depleted vesicles were larger in size and showed a higher tendency to aggregate compared to native vesicles, although their mechanical properties were alike. I also measured the aggregation kinetics of synaptic vesicles induced by synapsin I and found that the addition of synapsin I promotes a rapid aggregation of synaptic vesicles. The data indicate that synapsin I affects the stability and the aggregation state of synaptic vesicles, and confirm the physiological role of synapsins in the assembly and regulation of synaptic vesicle pools within nerve cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die neuronale Signalübertragung beruht auf dem synaptischen Vesikelzyklus, der durch das koordinierte Zusammenspiel von circa 400 verschiedenen Proteinen reguliert wird. Eines der Hauptproteine des synaptischen Vesikels ist Synaptophysin (SYP), das zu den tetraspan vesicle membrane proteins (TVPs) gehört. Es wird vermutet, dass es zahlreiche Funktionen der Exo- und Endozytose moduliert, wenngleich die zugrunde liegenden molekularen Mechanismen bisher größtenteils unverstanden sind. Ziel der Arbeit war daher die Identifizierung von Interaktionspartnern von SYP, um zum Verständnis der vielen ungeklärten Prozesse im synaptischen Vesikelzyklus beizutragen. Mit dem Split-Ubiquitin Yeast Two-Hybrid System, das eine direkte in vivo Interaktion von Membranproteinen erlaubt, konnten in der vorliegenden Arbeit bekannte, aber auch neue SYP-Bindungspartner identifiziert werden. Ein bekannter Interaktionspartner war Synaptobrevin2 (SYB2), das zu den stärksten im Split-Ubiquitin Y2H System identifizierten Bindeproteinen zählt. Zu den neuen starken SYP-Interaktionspartnern gehören die TVPs Synaptogyrin3 (SYNGR3) und SCAMP1. Somit konnten erstmals heterophile Interaktionen zwischen den verschiedenen TVP-Genfamilien nachgewiesen werden, die für eine universelle Funktion der TVPs sprechen. Die Validierung der im Split-Ubiquitin Y2H System ermittelten Interaktionspartner wurde auf eine Auswahl von Proteinen beschränkt, die vermutlich am synaptischen Vesikelzyklus beteiligt sind. Dabei konnte eine immunhistologische Kolokalisierung von SYP mit SYB2, SYNGR3, SCAMP1, Stathmin-like3 (STMN3), Rho family GTPase2 (RND2), Phospholipid transfer protein, Vesicle transport through interaction with t-SNAREs 1B homolog, Arfaptin2 und Profilin1 in den Synapsen-reichen Schichten der Retina beobachtet werden. Die SYP/SYB2- und SYP/SYNGR3-Komplexe konnten zudem sowohl aus Synaptosomen-Lysat als auch aus cDNA-transfizierten Epithelzellen koimmunpräzipitiert werden, wohingegen dies für die anderen Interaktionspartner nicht gelang. Da Koimmunpräzipitation die Struktur der Proteine durch Solubilisierung mit Detergenzien beeinflusst, wurden die in der Hefe beobachteten Interaktionen noch mittels Fluoreszenz-Resonanz-Energie-Transfer überprüft, mit dem Proteinwechselwirkungen in der nativen Umgebung nachgewiesen werden können. Ein positives FRET-Signal konnte für SYP mit SYB2, SYP, SYNGR3, SCAMP1, STMN3, RND2 und Arfaptin2 detektiert werden, lediglich für SYP mit Phospholipase D4 (PLD4) gelang dieser Nachweis nicht. Ferner zeigten FRET-Analysen von Synaptophysin-Mutanten, dass der zytoplasmatische C-Terminus für die Interaktion mit zytoplasmatischen und membranassoziierten Proteinen benötigt wird. Durch in vivo FRET-Studien mit der SH2-Domäne der Src-Kinase, die an phosphorylierte Tyrosine bindet, konnte eine Tyrosin-Phosphorylierung des zytoplasmatischen C-Terminus von Synaptophysin und von Synaptogyrin3 detektiert werden. Viele der neu identifizierten Synaptophysin-Interaktionspartner sind im Lipid-Metabolismus involviert. Vermutlich rekrutiert der zytoplasmatische und durch Phosphorylierung modifizierbare C-Terminus diese Partner in spezifische Lipoproteindomänen, die an der Feinabstimmung der synaptischen Vesikelendo- und -exozytose beteiligt sind.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ribbon synapses of the vertebrate retina are specialized synapses that release neurotransmitter by synaptic vesicle exocytosis in a manner that is proportional to the level of depolarization of the cell. This release property is different from conventional neurons, in which the release of neurotransmitter occurs as a short-lived burst triggered by an action potential. Synaptic vesicle exocytosis is a calcium regulated process that is dependent on a set of interacting synaptic proteins that form the so-called SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex. Syntaxin 3B has been identified as a specialized SNARE molecule in ribbon synapses of the rodent retina. However, the best physiologically-characterized neuron that forms ribbon-style synapses is the rod-dominant or Mb1 bipolar cell of the goldfish retina. We report here the molecular characterization of syntaxin 3B from the goldfish retina. Using a combination of reverse transcription (RT) polymerase chain reaction (PCR) and immunostaining with a specific antibody, we show that syntaxin 3B is highly enriched in the plasma membrane of bipolar cell synaptic terminals of the goldfish retina. Using membrane capacitance measurements we demonstrate that a peptide derived from goldfish syntaxin 3B inhibits synaptic vesicle exocytosis. These experiments demonstrate that syntaxin 3B is an important factor for synaptic vesicle exocytosis in ribbon synapses of the vertebrate retina.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Enhanced expression of the presynaptic protein synapsin has been correlated with certain forms of long-term plasticity and learning and memory. However, the regulation and requirement for enhanced synapsin expression in long-term memory remains unknown. In the present study the technical advantages of the marine mollusc Aplysia were exploited in order to address this issue. In Aplysia, learning-induced enhancement in synaptic strength is modulated by serotonin (5-HT) and treatment with 5-HT in vitro of the sensorimotor synapse induces long-term facilitation (LTF) of synaptic transmission, which lasts for days, as well as the formation of new connections between the sensory and motor neuron. Results from immunofluorescence analysis indicated that 5-HT treatment upregulates synapsin protein levels within sensory neuron varicosities, the presumed site of neurotransmitter release. To investigate the mechanisms underlying increased synapsin expression, the promoter region of the Aplysia synapsin gene was cloned and a cAMP response element (CRE) was identified, raising the possibility that the transcriptional activator cAMP response element-binding protein-1 (CREB1) mediates the 5-HT-induced regulation of synapsin. Results from Chromatin Immunoprecipitation (ChIP) assays indicated that 5-HT treatment enhanced association of CREB1 surrounding the CRE site in the synapsin promoter and led to increased acetylation of histones H3 and H4 and decreased association of histone deacetylase 5 surrounding the CRE site in the synapsin promoter, a sign of transcriptional activation. In addition, sensory neurons injected with an enhanced green fluorescent protein (EGFP) reporter vector driven by the synapsin promoter exhibited a significant increase in EGFP expression following treatment with 5-HT. These results suggest that synapsin expression is regulated by 5-HT in part through transcriptional activation of the synapsin gene and through CREB1 association with the synapsin promoter. Furthermore, RNA interference that blocks 5-HT-induced elevation of synapsin expression also blocked long-term synaptic facilitation. These results indicate that 5-HT-induced regulation of synapsin is necessary for LTF and that synapsin is part of the cascade of synaptic events involved in the consolidation of memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distinct subtypes of glutamate receptors often are colocalized at individual excitatory synapses in the mammalian brain yet appear to subserve distinct functions. To address whether neuronal activity may differentially regulate the surface expression at synapses of two specific subtypes of ionotropic glutamate receptors we epitope-tagged an AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor subunit (GluR1) and an NMDA (N-methyl-d-aspartate) receptor subunit (NR1) on their extracellular termini and expressed these proteins in cultured hippocampal neurons using recombinant adenoviruses. Both receptor subtypes were appropriately targeted to the synaptic plasma membrane as defined by colocalization with the synaptic vesicle protein synaptophysin. Increasing activity in the network of cultured cells by prolonged blockade of inhibitory synapses with the γ-aminobutyric acid type A receptor antagonist picrotoxin caused an activity-dependent and NMDA receptor-dependent decrease in surface expression of GluR1, but not NR1, at synapses. Consistent with this observation identical treatment of noninfected cultures decreased the contribution of endogenous AMPA receptors to synaptic currents relative to endogenous NMDA receptors. These results indicate that neuronal activity can differentially regulate the surface expression of AMPA and NMDA receptors at individual synapses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The unc-11 gene of Caenorhabditis elegans encodes multiple isoforms of a protein homologous to the mammalian brain-specific clathrin-adaptor protein AP180. The UNC-11 protein is expressed at high levels in the nervous system and at lower levels in other tissues. In neurons, UNC-11 is enriched at presynaptic terminals but is also present in cell bodies. unc-11 mutants are defective in two aspects of synaptic vesicle biogenesis. First, the SNARE protein synaptobrevin is mislocalized, no longer being exclusively localized to synaptic vesicles. The reduction of synaptobrevin at synaptic vesicles is the probable cause of the reduced neurotransmitter release observed in these mutants. Second, unc-11 mutants accumulate large vesicles at synapses. We propose that the UNC-11 protein mediates two functions during synaptic vesicle biogenesis: it recruits synaptobrevin to synaptic vesicle membranes and it regulates the size of the budded vesicle during clathrin coat assembly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report that 9 d of uncontrolled experimental diabetes induced by streptozotocin (STZ) in rats is an endogenous chronic stressor that produces retraction and simplification of apical dendrites of hippocampal CA3 pyramidal neurons, an effect also observed in nondiabetic rats after 21 d of repeated restraint stress or chronic corticosterone (Cort) treatment. Diabetes also induces morphological changes in the presynaptic mossy fiber terminals (MFT) that form excitatory synaptic contacts with the proximal CA3 apical dendrites. One effect, synaptic vesicle depletion, occurs in diabetes as well as after repeated stress and Cort treatment. However, diabetes produced other MFT structural changes that differ qualitatively and quantitatively from other treatments. Furthermore, whereas 7 d of repeated stress was insufficient to produce dendritic or synaptic remodeling in nondiabetic rats, it potentiated both dendritic atrophy and MFT synaptic vesicle depletion in STZ rats. These changes occurred in concert with adrenal hypertrophy and elevated basal Cort release as well as hypersensitivity and defective shutoff of Cort secretion after stress. Thus, as an endogenous stressor, STZ diabetes not only accelerates the effects of exogenous stress to alter hippocampal morphology; it also produces structural changes that overlap only partially with those produced by stress and Cort in the nondiabetic state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have isolated 165 Caenorhabditis elegans mutants, representing 21 genes, that are resistant to inhibitors of cholinesterase (Ric mutants). Since mutations in 20 of the genes appear not to affect acetylcholine reception, we suggest that reduced acetylcholine release contributes to the Ric phenotype of most Ric mutants. Mutations in 15 of the genes lead to defects in a gamma-aminobutyric acid-dependent behavior; these genes are likely to encode proteins with general, rather than cholinergic-specific, roles in synaptic transmission. Ten of the genes have been cloned. Seven encode homologs of proteins that function in the synaptic vesicle cycle: two encode cholinergic-specific proteins, while five encode general presynaptic proteins. Two other Ric genes encode homologs of G-protein signaling molecules. Our assessment of synaptic function in Ric mutants, combined with the homologies of some Ric mutants to presynaptic proteins, suggests that the analysis of Ric genes will continue to yield insights into the regulation and functioning of synapses.