986 resultados para Symbiotic Algae
Resumo:
Symbiotic Aiptasia pulchella and freshly isolated zooxanthellae were incubated in (NaHCO3)-C-14 and NH4Cl for 1 to 240 min, and samples were analysed by reverse-phase high-performance liquid chromatography (HPLC) and an online radiochemical detector. NH4+ was first assimilated into C-14-glutamate and C-14-glutamine in the zooxanthellae residing in A. pulchella. The specific activities (dpm nmol(-1)) of C-14-glutamate and C-14-glutamine in vivo, were far greater in the zooxanthellae than in the host tissue, indicating that NH4+ was principally incorporated into the glutamate and glutamine pools of the zooxanthellae. C-14-alpha-ketoglutarate was taken up from the medium by intact A. pulchella and assimilated into a small amount of C-14-glutamate in the host tissue, but no C-14-glutamine was detected in the host fraction. The C-14-glutamate that was synthesized was most likely produced from transamination reactions as opposed to the direct assimilation of NH4+. The free aminoacid composition of the host tissue and zooxanthellae of A. pulchella was also measured. The results presented here demonstrate that NH4+ was initially assimilated by the zooxanthellae of A. pulchella.
Resumo:
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm(-2) h(-1) which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm(-2) h(-1) (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 mu M could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm(-2) h(-1). These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m(-2) h(-1), P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only similar or equal to 11.3% of the nitrogen demand of P. damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing).
Resumo:
The surfaces of non-geniculate coralline algae (NCA) are known to induce the settlement and metamorphosis of disparate marine taxa. In this study we investigate the responsiveness of larvae of Herdmania curvata (Ascidiacea: Stolidobranchia) to three species of NCA (Neo-goniolithon brassica-florida, Hydrolithon onkodes, and Lithothamnium prolifer) that cohabit the slope and crest of Heron Reef, Great Barrier Reef. H. curvata larvae were first exposed to these NCA at or within 2 h of hatching, which is 1 to 2 h prior to attaining competence, and then cultured continuously with the NCA for 12 to 14 h. Rates of settlement and metamorphosis of H, curvata cultured in laboratory chambers in the presence of the different NCA were significantly lower than spontaneous rates in seawater. The limited settlement in treatments containing NCA were confined entirely to the chamber periphery, and settlement never occurred on the surface of the NCA. The inhibitory effect was dose-dependent and was stronger in H. brassica-florida and H. onkodes than in L. prolifer. Larvae that did not settle in treatments with NCA had rounded anterior trunks and, in extreme cases, kinked tails with rounded and dissociated tail muscle cells. In some individuals, we observed the anterior chemosensory papillae being sloughed off the larval body. Morphological analysis of trunk ectodermal and mesenchymal nuclei of larvae cultured in the presence of the NCA revealed that general necrotic cell death was occurring. Importantly, H. curvata larvae that were exposed to NCA could not subsequently be induced to metamorphose in KCl-elevated seawater, whereas larvae not exposed to NCA metamorphosed at high rates in KCl-elevated seawater.
Resumo:
The symbiotic lifestyle is widespread among porcellanid crabs, which maintain ecological and co-evolutionary associations with annelid polychaetes, poriferans, cnidarians, echinoderms, gastropod. mollusks, and other crustaceans such as shrimps and hermit crabs, among others. We investigated the ecological association between the hermit crab Dardanus insignis and the porcellanid Porcellana sayana, in southeastern Brazil. Porcellanid crabs, hermit crabs, and available shells were collected monthly from July 2001 to June 2003, with a shrimp boat equipped with two double-rig trawl nets. The majority of P. sayana specimens were collected in shells occupied by D. insignis (96.6%); a few were found in empty shells (3.4%). The catch of both symbionts and hosts increased with increasing depth, with the highest occurrence at 35 m. The F. sayana crabs of various sizes could be found solitary or forming aggregations of up to 14 individuals per host, showing no sex or size segregation. In spite of the high diversity of shell species occupied by the hermit crabs and also available in the field, only a few of them were also utilized by P. sayana. The majority (93%) of shells utilized by P. sayana also hosted other symbiont species, constituting the basis of extensive symbiotic complexes. Thus, the ecological relationship between D. insignis and P. sayana may be classified as a non-obligate and non-specific symbiosis that may also involve other facultative organisms such as sea anemones. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Inorganic nutrients play a critical role in determining benthic community structure in tropical seas. This study examined the impact of adding inorganic nutrients (ammonium and phosphate) on the isotopic composition of 2 reef-building corals, Pocillopora damicornis and Heliofungia actiniformis, on the southern Great Barrier Reef. The addition of elevated nutrients to patch reefs that pond at low tide did not perturb the C:N ratio of either species or their symbiotic dinoflagellates. The C:N ratios were significantly higher in material extracted from the skeleton (14.8 +/- 1.50 and 10.8 +/- 1.42) than either host (7.6 +/- 0.87 and 6.0 +/- 0.71) or symbiotic dinoflagellates (5.7 +/- 0.48 and 6.9 +/- 0.66) (P. damicornis and H. actiniformis respectively; 95 confidence intervals). The ratio of acquired N to background N suggests that the added dissolved inorganic nitrogen (DIN) accounted for 50 to 100% of total nitrogen within the tissues of P. damicornis and H. actiniformis at the end of the experiment. The addition of the isotopically depleted nutrients (delta(15) N = 0parts per thousand) to patch reefs significantly decreased delta(15)N from control values of between 3 and 4 to values to below 1 in the case of all compartments, while delta(13)C values were relatively unresponsive to nutrient treatments. These findings suggest that coral delta(15)N has the potential to provide a historical record of the delta(15)N of dissolved nitrogen surrounding reef-building corals and their symbiotic dinoflagellates.
Resumo:
The novel bicyclic lipid, dictyosphaerin (1), has been isolated from the southern Australian marine green alga Dictyosphaeria sericea. The molecular structure for 1 was secured by chemical derivatization and detailed spectroscopic analysis.
Resumo:
Cell-wall polysaccharides from six species of red algae of the genus Callophycus were mainly galactans comprised predominantly of galactose (Gal) and 3,6-anhydrogalactose (AnGal), and were rich in pyruvate and sulfate. The Fourier Transform Infrared (FTIR) spectra of the polysaccharides superficially resembled that of alpha-carrageenan (composed of the repeating disaccharide carrabiose 2-sulfate), with major bands of absorption indicative of if-linked AnGal, axial 2-sulfate on 4-linked AnGal, and unsulfated, 3-linked Gal. The FTIR spectra of solutions of Callophycus polysaccharides in D2O-phosphate buffer displayed absorption, corresponding to the carboxylate anion of the pyruvate acetal substituent. Methylation analysis showed that 3,4,6-linked Galp (interpreted as 4,6-pyruvated, 3-linked Galp) and 2,4-linked AnGalp (interpreted as 4-linked AnGalp 2-sulfate) were the dominant links, together with significant quantities of 3-linked Galp. Proton-decoupled C-13 nuclear magnetic resonance (NMR) spectroscopy showed the polysaccharides to be composed predominantly of pyruvated carrageenans. The C-13 NMR spectra were completely assigned by a J-modulated spin-echo pulse sequence and 2D experiments employing gradient Heteronuclear Multiple Bond Correlation (HMBC), C-13/H-1 Heteronuclear Multiple Quantum Coherence (HMQC), and HMQC Total Correlation Spectroscopy (HMQC-TOCSY). The Callophycus galactans thus consist predominantly of the novel repeating disaccharide 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate and minor amounts of the alpha-carrageenan repeating unit (carrabiose 2-sulfate), and other structural variations. (C) 1997 Elsevier Science Ltd.
Resumo:
Guadalupian reefs occur locally in Guangxi, Guizhou, Yunnan and Western Zhejiang, South China. Two types of Guadalupian reefs can be recognized, one is developed in carbonate platforms, e.g. those in the juncture areas of Guangxi, Yunnan and Guizhou; the other occurs in a littoral clastic shelf. The Lengwu reef in Western Zhejiang is a representative of the latter type, which is a major topic of this paper. Lengwu algae-sponge reef, more than one hundred meters in thickness, are composed mainly of sponges, hydrozoans, algae, bryozoans, microbes and lime mud. Reef limestones sit on the mudstone interbedded with fine sandstone of the proximal prodelta facies and are overlain by coarse clasts of the delta front sediments. Lengwu reef displays a lens-shaped relief, dipping and thinning from the reef core, which is remarkably different from the surrounding sediments, showing a protruding relief. Sponges and microbe/algae form bafflestone, bindstone and framestone of the reef core facies. Fore-reef facies is characterized by lithoclastic rudstone and bioclastic packstone. Reef limestone sequence is composed of three cycles and controlled by sea level changes and sediment influx. Such reef is unique among the Guadalupian reefs in South China, but seems similar in some aspects to lwaizaki reef limestones of south Kitakami in Japan. Algae and microbes growing around sponges to form rigid structure in Lengwu reef are a typical feature, which is distinctly different to Guadalupian reefs in a stable platform facies of Guizhou, Yunnan and Guangxi, South China.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Resumo:
The scleractinian coral species, Seriatopora hystrix and Acropora longicyathus, are widely distributed throughout the latitudinal range of the tropical west Pacific. These 2 coral species live in a mutually beneficial relation with symbiotic dinoflagellates (zooxanthellae), which are passed to their progeny by vertical transmission (zooxanthellate eggs or larvae) and horizontal transmission (eggs or larvae that acquire symbionts from the environment), respectively. For S. hystrix, vertical transmission might create biogeographically isolated and genetically differentiated symbiont populations because the extent of its larval migration is known to be limited. On the other hand, horizontal transmission in corals such as A. longicyathus may result in genetically connected symbiont populations, especially if its zooxanthellae taxa are widely distributed. To examine these hypotheses, symbionts were collected from colonies of S. hystrix and A. longicyathus living in the Great Barrier Reef (Australia), South China Sea (Malaysia) and East China Sea (Ryukyus Archipelago, Japan), and were examined using restriction fragment length polymorphism and sequence analysis of large and small subunit rRNA genes. Phylogenetic analysis assigned the symbionts to 1 of 3 taxonomically distinct groups, known as clades. Symbionts from Australian and Japanese S. hystrix were placed in Clade C, and Malaysian S. hystrix symbionts in the newly described Clade D. Seven of 11 Australian and all Japanese and Malaysian colonies of A. longicyathus had symbiotic dinoflagellates that also grouped with Clade C, but symbionts from the remaining Australian colonies of A. longicyathus grouped with Clade A. Analysis of molecular variance of Clade C symbionts found significant genetic variation in 1 or more geographic groups (69.8%) and to a lesser extent among populations within geographic regions (13.6%). All populations of Clade C symbionts from S. hystrix were genetically differentiated according to geographic region. Although Clade C symbionts of A. longicyathus from Japan resolved into a distinct geographic group, those from Australia and Malaysia did not and were genetically connected. We propose that these patterns of genetic connectivity correlate with differences in the dispersal range of the coral or symbiont propagules and are associated with their respective modes of symbiont transmission.
Resumo:
The purpose of this study was to determine whether the addition of iron alone or in combination with nitrate affects growth and photosynthesis of the scleractinian coral, Stylophora pistillata, and its symbiotic dinoflagellates. For this purpose, we used three series of two tanks for a 3-week enrichment with iron (Fe), nitrate (N) and nitrate + iron (NFe). Two other tanks were kept as a control (C). Stock solutions of FeCl3 and NaNO3 were diluted to final concentrations of 6 nM Fe and 2 muM N and continuously pumped from batch tanks into the experimental tanks with a peristaltic pump. Results obtained showed that iron addition induced a significant increase in the areal density of zooxanthellae (ANOVA, p = 0.0013; change from 6.3 +/- 0.7 x 10(5) in the control to 8.5 +/- 0.6 x 10(5) with iron). Maximal gross photosynthetic rates normalized per surface area also significantly increased following iron enrichment (ANOVA, p = 0.02; change from 1.23 +/- 0.08 for the control colonies to 1.81 +/- 0.24 mu mol O-2 cm(-2) h(-1) for the iron-enriched colonies). There was, however, no significant difference in the photosynthesis normalized on a per cell basis. Nitrate enrichment alone (2 muM) did not significantly change the zooxanthellae density or the rates of photosynthesis. Nutrient addition (both iron and nitrogen) increased the cell-specific density of the algae (CSD) compared to the control (G-test, p = 0.3 x 10(-9)), with an increase in the number of doublets and triplets. CSD was equal to 1.70 +/- 0.04 in the Fe-enriched colonies, 1.54 +/- 0.12 in the N- and NFe-enriched colonies and 1.37 +/- 0.02 in the control. Growth rates measured after 3 weeks in colonies enriched with Fe, N and NFe were 23%, 34% and 40% lower than those obtained in control colonies (ANOVA. p = 0.011). (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Dinoflagellates exist in symbiosis with a number of marine invertebrates including giant clams, which are the largest of these symbiotic organisms. The dinoflagellates (Symbiodinium sp.) live intercellularly within tubules in the mantle of the host clam. The transport of inorganic carbon (Ci) from seawater to Symbiodinium (=zooxanthellae) is an essential function of hosts that derive the majority of their respiratory energy from the photosynthate exported by the zooxanthellae. Immunolocalisation studies show that the host has adapted its physiology to acquire, rather than remove CO2, from the haemolymph and clam tissues. Two carbonic anhydrase (CA) isoforms (32 and 70 kDa) play an essential part in this process. These have been localised to the mantle and gill tissues where they catalyse the interconversion of HCO3- to CO2, which then diffuses into the host tissues. The zooxanthellae exhibit a number of strategies to maximise Ci acquisition and utilisation. This is necessary as they express a form II Rubisco that has poor discrimination between CO2 and O-2. Evidence is presented for a carbon concentrating mechanism (CCM) to overcome. this disadvantage. The CCM incorporates the presence of a light-activated CA activity, a capacity to take up both HCO3- and CO2, an ability to accumulate an elevated concentration of Ci within the algal cell, and localisation of Rubisco to the pyrenoid. These algae also express both external and intracellular CAs, with the intracellular isoforms being localised to the thylakoid lumen and pyrenoid. These results have been incorporated into a model that explains the transport of Ci from seawater through the clam to the zooxanthellae.