998 resultados para Swine health
Resumo:
Background: The Swiss pig population enjoys a favourable health situation. To further promote this, the Pig Health Service (PHS) conducts a surveillance program in affiliated herds: closed multiplier herds with the highest PHS-health and hygiene status have to be free from swine dysentery and progressive atrophic rhinitis and are clinically examined four times a year, including laboratory testing. Besides, four batches of pigs per year are fattened together with pigs from other herds and checked for typical symptoms (monitored fattening groups (MF)). While costly and laborious, little was known about the effectiveness of the surveillance to detect an infection in a herd. Therefore, the sensitivity of the surveillance for progressive atrophic rhinitis and swine dysentery at herd level was assessed using scenario tree modelling, a method well established at national level. Furthermore, its costs and the time until an infection would be detected were estimated, with the final aim of yielding suggestions how to optimize surveillance. Results: For swine dysentery, the median annual surveillance sensitivity was 96.7 %, mean time to detection 4.4 months, and total annual costs 1022.20 Euro/herd. The median component sensitivity of active sampling was between 62.5 and 77.0 %, that of a MF between 7.2 and 12.7 %. For progressive atrophic rhinitis, the median surveillance sensitivity was 99.4 %, mean time to detection 3.1 months and total annual costs 842.20 Euro. The median component sensitivity of active sampling was 81.7 %, that of a MF between 19.4 and 38.6 %. Conclusions: Results indicate that total sensitivity for both diseases is high, while time to detection could be a risk in herds with frequent pig trade. From all components, active sampling had the highest contribution to the surveillance sensitivity, whereas that of MF was very low. To increase efficiency, active sampling should be intensified (more animals sampled) and MF abandoned. This would significantly improve sensitivity and time to detection at comparable or lower costs. The method of scenario tree modelling proved useful to assess the efficiency of surveillance at herd level. Its versatility allows adjustment to all kinds of surveillance scenarios to optimize sensitivity, time to detection and/or costs.
Resumo:
BACKGROUND Current guidelines limit the use of high oxygen tension after return of spontaneous circulation after cardiac arrest, focusing on neurological outcome and mortality. Little is known about the impact of hyperoxia on the ischemic heart. Oxygen is frequently administered and is generally expected to be beneficial. This study seeks to assess the effects of hyperoxia on myocardia oxygenation in the presence of severe coronary artery stenosis in swine. METHODS AND RESULTS In 22 healthy pigs, we surgically attached a magnetic resonance compatible flow probe to the left anterior descending coronary artery (LAD). In 11 pigs, a hydraulic occluder was inflated distal to the flow probe. After increasing PaO2 to >300 mm Hg, LAD flow decreased in all animals. In 8 stenosed animals with a mean fractional flow reserve of 0.64±0.02, hyperoxia resulted in a significant decrease of myocardial signal intensity in oxygenation-sensitive cardiovascular magnetic resonance images of the midapical segments of the LAD territory. This was not seen in remote myocardium or in the other 8 healthy animals. The decreased signal intensity was accompanied by a decrease in circumferential strain in the same segments. Furthermore, ejection fraction, cardiac output, and oxygen extraction ratio declined in these animals. Changing PaCO2 levels did not have a significant effect on any of the parameters; however, hypercapnia seemed to nonsignificantly attenuate the hyperoxia-induced changes. CONCLUSIONS Ventilation-induced hyperoxia may decrease myocardial oxygenation and lead to ischemia in myocardium subject to severe coronary artery stenosis.
Resumo:
This assessment compares the human papillomavirus (HPV) nationwide vaccine to the poliomyelitis vaccine and the swine flu vaccine with the purpose of finding parallels and lessons in the controversies faced by the development and use of the vaccines. There are a number of great barriers that are facing the HPV vaccine to date. These controversies lie in dealing with the risk involved in taking the vaccine, how much control the government should have in administering the vaccine, how to communicate the risk to the public, and the cost-effectiveness of the vaccine versus treatment for cervical cancer. The lessons for the HPV vaccine that were learned after comparison and assessment of the controversies were: (1) plan ahead of time on how to inform the public if a risk develops from taking the HPV vaccination and it may be better to provide some information while the event is occurring, always being as truthful as possible, and later dispensing more information once all of the facts are known, (2) the human papillomavirus is not something that will become a pandemic in a short amount of time because the virus takes a long time to develop into cervical cancer, so if a major risk begins to show after continuing to develop and administer the vaccine for an amount of time, it may be better to take it off the market for a while and possibly reconfigure it to help eliminate some of the risks, (3) if side reactions and risks do develop and the government assumes liability for these reactions, the cost-effectiveness can be greatly affected, so it is important to be constantly checking to see if all the monetary and health benefits of the vaccine are outweighing any of the negative costs of the vaccine, and lastly, (4) the public must feel that every aspect of the vaccine, both good and bad, has been thought over and the benefits of taking the vaccine prevail over the negatives and that politics and commercial interests have nothing to do with the production and administration of the vaccine. ^
Resumo:
This study retrospectively evaluated the spatial and temporal disease patterns associated with influenza-like illness (ILI), positive rapid influenza antigen detection tests (RIDT), and confirmed H1N1 S-OIV cases reported to the Cameron County Department of Health and Human Services between April 26 and May 13, 2009 using the space-time permutation scan statistic software SaTScan in conjunction with geographical information system (GIS) software ArcGIS 9.3. The rate and age-adjusted relative risk of each influenza measure was calculated and a cluster analysis was conducted to determine the geographic regions with statistically higher incidence of disease. A Poisson distribution model was developed to identify the effect that socioeconomic status, population density, and certain population attributes of a census block-group had on that area's frequency of S-OIV confirmed cases over the entire outbreak. Predominant among the spatiotemporal analyses of ILI, RIDT and S-OIV cases in Cameron County is the consistent pattern of a high concentration of cases along the southern border with Mexico. These findings in conjunction with the slight northward space-time shifts of ILI and RIDT cluster centers highlight the southern border as the primary site for public health interventions. Finally, the community-based multiple regression model revealed that three factors—percentage of the population under age 15, average household size, and the number of high school graduates over age 25—were significantly associated with laboratory-confirmed S-OIV in the Lower Rio Grande Valley. Together, these findings underscore the need for community-based surveillance, improve our understanding of the distribution of the burden of influenza within the community, and have implications for vaccination and community outreach initiatives.^
Resumo:
A novel virus, designated swine hepatitis E virus (swine HEV), was identified in pigs. Swine HEV crossreacts with antibody to the human HEV capsid antigen. Swine HEV is a ubiquitous agent and the majority of swine ≥3 months of age in herds from the midwestern United States were seropositive. Young pigs naturally infected by swine HEV were clinically normal but had microscopic evidence of hepatitis, and developed viremia prior to seroconversion. The entire ORFs 2 and 3 were amplified by reverse transcription–PCR from sera of naturally infected pigs. The putative capsid gene (ORF2) of swine HEV shared about 79–80% sequence identity at the nucleotide level and 90–92% identity at the amino acid level with human HEV strains. The small ORF3 of swine HEV had 83–85% nucleotide sequence identity and 77–82% amino acid identity with human HEV strains. Phylogenetic analyses showed that swine HEV is closely related to, but distinct from, human HEV strains. The discovery of swine HEV not only has implications for HEV vaccine development, diagnosis, and biology, but also raises a potential public health concern for zoonosis or xenozoonosis following xenotransplantation with pig organs.
Resumo:
Cover title.
Resumo:
This study investigated the comparative susceptibility of indigenous Moo Laat and improved Large White/Landrace pig breeds to infection with classical swine fever virus (CSFV) under controlled conditions in the Lao People's Democratic Republic (Lao PDR). The Moo Laat (ML) and Large White/Landrace crossbreed (LWC) pigs were inoculated with a standard challenge strain designated Lao/Kham225 (infectivity titre of 10(2.75) TCID50/ml). The results demonstrated that both the native breed and an improved pig breed are fully susceptible to CSFV infection and the mortality rate is high. LWC pigs demonstrated lower (or shorter) survival times (50% survival time: 11 days), earlier and higher pyrexia and earlier onset of viraemia compared to ML pigs (50% survival time: 18 days). In the context of village-based pig production, the longer time from infection to death in native ML pigs means that incubating or early sick pigs are likely to be sold once an outbreak of CSF is recognized in a village. This increased longevity probably contributes to the maintenance and spread of disease in a population where generally the contact rate is low.
Resumo:
Feed production, swine and slaughterhouses were already reported as occupational environments with high fungal contamination. This condition can ultimately lead to the development of several health conditions. This study aimed to characterize the occupational exposure to fungal burden in three different settings: swine feed unit, swine units and slaughterhouse.