989 resultados para Sustainable Solutions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

From the very first steps to execute a building, it is essential to analyze its life cycle. Similarly, we should consider the life cycle when projecting an urban intervention. Professionals of the Facility Management take part in construction projects, developing and managing DBFMO projects (Design, Build, Finance, Maintenance & Operate). Whatever the nature of the promoter is – private or public – promoters are leaders in projects of responsible management of spaces, whether these are work spaces, leisure spaces or residential spaces. They know and identify with the company and its performance, its values and its needs. These professionals give sustainable solutions in the life cycle of buildings (offices and housing), new ways to work and initiatives of innovations linked to current social changes: technology, social networks, and new habits. Concepts where innovation is essential should consider responsible values. Social, economic and sustainable aspects have to associate with the management performed by a Facilities Manager when considering the three groups of stakeholders with which it is linked: economic (shareholders), contractual (users), non-contractual (neighborhoods, organizations, etc.). Marcus Vitruvius Pollio, at the beginning of his book "The Ten Books on Architecture" describes and argues how the distribution in buildings must always adapt to their inhabitants. Let us build cities and buildings with responsible criteria, bearing in mind all its users and the needs of each one of them. Not to mention the need to adapt to future requirements with minimum cost and maximum profitability. These needs, under responsible management, are competencies developed by a Facilities Manager in his day to day. He cares and takes over the entire life cycle of buildings and their surroundings. This work is part of the PhD project whose main aim is to study the added value to the architectural profession when social responsibility criteria are applied in his/her role as Facility Manager.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo se ha centrado en la búsqueda y análisis de técnicas de saneamiento y depuración que proporcionen soluciones a poblaciones pequeñas, que por su situación económica o de desarrollo, carecen de estos servicios básicos. Es bien conocido los problemas que genera la falta de acceso al saneamiento básico en contextos de subdesarrollo, agravado en numerosos casos, por los incrementos en la dotación de agua sin introducir las infraestructuras para el tratamiento de las aguas residuales. Esta situación incide directamente sobre la salud de las personas y del medioambiente. Afortunadamente existen Organismos Internacionales y Agencias de Desarrollo y de Medioambiente, que intervienen directamente en estos temas. Los problemas no sólo se presentan en los llamados países en vías de desarrollo, sino que se ha comprobado que también afecta a poblaciones pequeñas con escasos recursos, del mundo más desarrollado. Muchas han sido las técnicas utilizadas con gran éxito en programas de cooperación, pero algunas han fracasado por pérdida de funcionalidad, por errores de diseño, por rápido deterioro de los materiales, o simplemente por falta de adaptabilidad al terreno o no previsión de controles y mantenimiento. La solución a estos eventos pasa por la innovación tanto tecnológica como de gestión, sin olvidar la componente socioeconómica y cultural. Tomar conciencia de un buen diseño adaptado a las características del terreno y de la población, evitaría fracasos por colapso, por falta de mantenimiento, de financiación etc. Por otra parte, se considera necesaria la implementación de programas educativos que incluyan mejoras en los hábitos higiénicos y el conocimiento de las infraestructuras que permitan a la población de destino, adquirir una formación sobre las propias instalaciones, su uso, su mantenimiento y conservación. El desarrollo y mejora de las técnicas de saneamiento y depuración requiere una continuidad en las investigaciones que facilite la adaptación de las instalaciones ya existentes a las diferentes coyunturas que puedan presentarse, garantizando su funcionamiento a largo plazo. Las técnicas denominadas “no convencionales” se caracterizan por ser soluciones económicas y sostenibles, que en algunos casos, requieren poco mantenimiento e incluso éste puede realizarse por personal no especializado, esto es, por los propios usuarios del servicio. Concretamente en el presente trabajo se ha llevado a cabo una revisión general de las tipologías conocidas, tanto convencionales como no convencionales y de su posible aplicación en función de la población de destino, con especial incidencia en las poblaciones más desfavorecidas. Una vez realizada, se han seleccionado las técnicas de saneamiento y depuración no convencionales por el interés personal en las poblaciones con mayores dificultades socioeconómicas. Se han estudiado distintas situaciones en diferentes países y contextos Nicaragua, Ecuador, India y España. Es en esta última, donde se han tenido más facilidades para la obtención de datos y análisis de los mismos, concretamente de la instalación del municipio de Fabara en la provincia de Zaragoza, situado en el Bajo Aragón. ABSTRACT The focus of this project lies on the research and analysis of sanitation and waste water treatment techniques able to provide solutions to small settlements which lack such basic services out of economic or underdevelopment reasons. The problems generated by the absence of access to basic sanitation services in underdevelopment contexts are well known, and many cases can be found where increase of water provision doesn’t involve installation of waste water treatment infrastructures. This situation has a direct impact on people’s health and also on the environment. Fortunately, there are International Organizations and Development Agencies which act directly on these matters. These problems don’t only occur in so called developing countries, as it has been confirmed that small settlements with scarce resources in the more developed world can also be affected. Many techniques have been successfully used in cooperation programs, but also some of them have failed due to loss of functionality, design mistakes, rapid material deterioration, or simply site inadequacy or lack of control and maintenance precautions. The solution to these incidents requires technological as well as management innovation, regarding for all cases the socioeconomic and cultural factors. The awareness of a good design, adapted to the site and population characteristics, would prevent from failures due to collapse, lack of maintenance, funding, etc. Furthermore, the implementation of education programs for improving hygienic habits and for transmitting the understanding of the infrastructures is considered necessary for allowing the aimed population to gain proper knowledge on their own infrastructure, its use, maintenance and preservation. The improvement of sanitation and waste water treatment techniques requires a continuous process of investigation, in order to adapt the existing infrastructure to the different situations that may come up, being able to ensure its long-term functioning. The so called non conventional techniques are characterized by being economic and sustainable solutions, requiring in some cases low maintenance, conducted even by non specialized personnel, that is, by the users themselves. In the present project a general overview of the already developed typologies has been carried out, taking into account the conventional as well as the non conven tional techniques and their possible application according to the aimed population, regarding especially the most underprivileged settlements. Thereupon, out of interest for the settlements with most socioeconomic difficulties, the non conventional sanitation and waste water techniques have been selected. A variety of situations in different countries and contexts has been examined, specifically in Nicaragua, Ecuador, India and Spain. The latest has proven easier for data collection and analysis, focusing finally on the existing infrastructure in the village of Fabara, province of Zaragoza, in the Bajo Aragón.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article examines the transformation in the narratives of the international governance of security over the last two decades. It suggests that there has been a major shift from governing interventions designed to address the causes of security problems to the regulation of the effects of these problems. In rearticulating the goals of international actors, the means and mechanisms of security governance have also changed, no longer focused on the universal application of Western knowledge and resources but rather on the unique local and organic processes at work in societies that bear the brunt of these problems. This transformation takes the conceptualisation of security governance out of the traditional terminological lexicon of security expertise and universal solutions and instead articulates the problematic of security and the policing of global risks in terms of local management processes, suggesting that decentralised coping strategies and self-policing are more effective and sustainable solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea lice continue to be one of the largest issues for the salmon farming industry and the use of ballan wrasse (Labrus bergylta) as a biological control is considered to be one of the most sustainable solutions in development. Broodstock management has proved challenging in the initial phases due to the significant lack of understanding of basic reproductive physiology and behaviour in the species. The aim of the study was to monitor captive breeding populations throughout a spawning season to examine timing and duration of spawning,quantify egg production, and look at seasonal changes in egg quality parameters as well as investigate the parental contribution to spawning events. A clear spawning rhythm was shown with 3-5 spawning periods inclusive of spawning windows lasting 1-9 days followed by inter spawning intervals of 8-12 days. Fertilization rate remained consistently high (> 87.5%) over the spawning season and did not differ significantly between spawning populations. Hatch rate was variable (0-97.5 %), but peaked in the middle of the spawning season. Meanoocyte diameter and gum layer thickness decreased slightly over the spawning season with no significant differences between spawning populations. Fatty acid (FA) profile of eggs remained consistent throughout the season and with the exception of high levels of ARA (3.8 ± 0.5 % of total FA) the FA profile was similar to that observed in other marine fish species. Parental contribution analysis showed 3 out of 6 spawning events to be single paired mating while the remaining 3 had contributions from multiple parents. Furthermore, the proposed multiple batch spawning nature of this species was confirmed with proof of a single femalecontributing to two separate spawning events. Overall this work represents the first comprehensive data set of spawning activity of captive ballan wrasse, and as such and will be helpful in formulating sustainable broodstock management plans for the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is strong evidence to support the multiple benefits of physical activity to health and wellbeing. It promotes healthy growth and development in children and young people. It contributes to cognitive function. It is important for healthy ageing and helps to maintain quality of life and independence when we grow older. It is also a preventative factor for many non-communicable diseases. This Plan focuses on different types of actions, some immediate and some more long-term and sustainable solutions, which recognise that behaviour change is complex, challenging and takes time. This does not merely focus on overcoming deficits but concentrates on solutions and strengths and reshaping the environment for physical activity.    

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions and is aligned with the Programme on Ecosystem Change and Society (PECS) goals and approach. Our aim is to examine and develop the conceptual basis for proposed collaboration between ILTER and PECS. We describe how a coordinated effort of several contrasting LTER site-based research groups contributes to the understanding of how policies and technologies drive either toward or away from the sustainable delivery of ecosystem services. This effort is based on three tenets: transdisciplinary research; cross-scale interactions and subsequent dynamics; and an ecological stewardship orientation. The overarching goal is to design management practices taking into account trade-offs between using and conserving ecosystems toward more sustainable solutions. To that end, we propose a conceptual approach linking ecosystem integrity, ecosystem services, and stakeholder well-being, and as a way to analyze trade-offs among ecosystem services inherent in diverse management options. We also outline our methodological approach that includes: (i) monitoring and synthesis activities following spatial and temporal trends and changes on each site and by documenting cross-scale interactions; (ii) developing analytical tools for integration; (iii) promoting trans-site comparison; and (iv) developing conceptual tools to design adequate policies and management interventions to deal with trade-offs. Finally, we highlight the heterogeneity in the social-ecological setting encountered in a subset of 15 ILTER sites. These study cases are diverse enough to provide a broad cross-section of contrasting ecosystems with different policy and management drivers of ecosystem conversion; distinct trends of biodiversity change; different stakeholders’ preferences for ecosystem services; and diverse components of well-being issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nervous system disorders are associated with cognitive and motor deficits, and are responsible for the highest disability rates and global burden of disease. Their recovery paths are vulnerable and dependent on the effective combination of plastic brain tissue properties, with complex, lengthy and expensive neurorehabilitation programs. This work explores two lines of research, envisioning sustainable solutions to improve treatment of cognitive and motor deficits. Both projects were developed in parallel and shared a new sensible approach, where low-cost technologies were integrated with common clinical operative procedures. The aim was to achieve more intensive treatments under specialized monitoring, improve clinical decision-making and increase access to healthcare. The first project (articles I – III) concerned the development and evaluation of a web-based cognitive training platform (COGWEB), suitable for intensive use, either at home or at institutions, and across a wide spectrum of ages and diseases that impair cognitive functioning. It was tested for usability in a memory clinic setting and implemented in a collaborative network, comprising 41 centers and 60 professionals. An adherence and intensity study revealed a compliance of 82.8% at six months and an average of six hours/week of continued online cognitive training activities. The second project (articles IV – VI) was designed to create and validate an intelligent rehabilitation device to administer proprioceptive stimuli on the hemiparetic side of stroke patients while performing ambulatory movement characterization (SWORD). Targeted vibratory stimulation was found to be well tolerated and an automatic motor characterization system retrieved results comparable to the first items of the Wolf Motor Function Test. The global system was tested in a randomized placebo controlled trial to assess its impact on a common motor rehabilitation task in a relevant clinical environment (early post-stroke). The number of correct movements on a hand-to-mouth task was increased by an average of 7.2/minute while the probability to perform an error decreased from 1:3 to 1:9. Neurorehabilitation and neuroplasticity are shifting to more neuroscience driven approaches. Simultaneously, their final utility for patients and society is largely dependent on the development of more effective technologies that facilitate the dissemination of knowledge produced during the process. The results attained through this work represent a step forward in that direction. Their impact on the quality of rehabilitation services and public health is discussed according to clinical, technological and organizational perspectives. Such a process of thinking and oriented speculation has led to the debate of subsequent hypotheses, already being explored in novel research paths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Food production account for significant share of global environmental impacts. Impacts are global warming, fresh water use, land use and some non-renewable substance consumption like phosphorous fertilizers. Because of non-sustainable food production, the world is heading to different crises. Both food- and freshwater crises and also land area and phosphorous fertilizer shortages are one of many challenges to overcome in near future. The major protein sources production amounts, their impacts on environment and uses are show in this thesis. In this thesis, a more sustainable than conventional way of biomass production for food use is introduced. These alternative production methods are photobioreactor process and syngas-based bioreactor process. The processes’ energy consumption and major inputs are viewed. Their environmental impacts are estimated. These estimations are the compared to conventional protein production’s impacts. The outcome of the research is that, the alternative methods can be more sustainable solutions for food production than conventional production. However, more research is needed to verify the exact impacts. Photobioreactor is more sustainable process than syngas-based bioreactor process, but it is more location depended and uses more land area than syngas-based process. In addition, the technology behind syngas-based application is still developing and it can be more efficient in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the ever-growing amount of connected sensors (IoT), making sense of sensed data becomes even more important. Pervasive computing is a key enabler for sustainable solutions, prominent examples are smart energy systems and decision support systems. A key feature of pervasive systems is situation awareness which allows a system to thoroughly understand its environment. It is based on external interpretation of data and thus relies on expert knowledge. Due to the distinct nature of situations in different domains and applications, the development of situation aware applications remains a complex process. This thesis is concerned with a general framework for situation awareness which simplifies the development of applications. It is based on the Situation Theory Ontology to provide a foundation for situation modelling which allows knowledge reuse. Concepts of the Situation Theory are mapped to the Context Space Theory which is used for situation reasoning. Situation Spaces in the Context Space are automatically generated with the defined knowledge. For the acquisition of sensor data, the IoT standards O-MI/O-DF are integrated into the framework. These allow a peer-to-peer data exchange between data publisher and the proposed framework and thus a platform independent subscription to sensed data. The framework is then applied for a use case to reduce food waste. The use case validates the applicability of the framework and furthermore serves as a showcase for a pervasive system contributing to the sustainability goals. Leading institutions, e.g. the United Nations, stress the need for a more resource efficient society and acknowledge the capability of ICT systems. The use case scenario is based on a smart neighbourhood in which the system recommends the most efficient use of food items through situation awareness to reduce food waste at consumption stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sustainability of buildings associated to the use of raw earth has motivated the studies and the development of techniques and methods in the context of this type of construction. In the region of Huambo, Angola, these construction techniques are widely used, especially for low-income families who represent the majority of the population. Much of the buildings in Huambo province are built with adobe. Due to the climate in this region, subtropical, hot and humid, with altitudes above 1000 meters and extensive river system, these buildings are particularly vulnerable to the action of water and develop, in many situations, early degradation. The Huambo Province is located in central Angola, has 36 km2 area and approximately 2 million inhabitants. This work aims to evaluate, by conducting in-situ tests, physical and mechanical properties of adobe blocks typically used in the construction of those buildings. The methodology is based on field campaigns where in-situ expeditious tests were performed in soils (smell test, color, touch, brightness, sedimentation, ball, hardness, etc.) and tests on adobes blocks made with traditional procedures, particularly in terms of durability and erodibility (erosion test at Geelong method; evaluation test of wet / dry cycle, applying the New Zealand standards 4297: 1998; 4297: 1998 and 4297: 1999). The results will contribute to the characterization of the geomaterials and methods used in construction with earth in Huambo Province, contributing to the improvement of these sustainable solutions, with a strong presence in this region. The results of this study will also contribute to the proposal of constructive solutions with improved performance characteristics, comfort, safety and durability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared to other, plastic materials have registered a strong acceleration in production and consumption during the last years. Despite the existence of waste management systems, plastic_based materials are still a pervasive presence in the environment, with negative consequences on marine ecosystem and human health. The recycling is still challenging due to the growing complexity of product design, the so-called overpackaging, the insufficient and inadequate recycling infrastructure, the weak market of recycled plastics and the high cost of waste treatment and disposal. The Circular economy package, the European Strategy for plastics in a circular economy and the recent European Green Deal include very ambitious programmes to rethink the entire plastic value chain. As regards packaging, all plastic packaging will have to be 100% recyclable (or reusable) and 55% recycled by 2030. Regions are consequently called upon to set up a robust plan able to fit the European objectives. It takes on greater importance in Emilia Romagna where the Packaging valley is located. This thesis supports the definition of a strategy aimed to establish an after-use plastics economy in the region. The PhD work has set the basis and the instruments to establish the so-called Circularity Strategy with the aim to turn about 92.000t of plastic waste into profitable secondary resources. System innovation, life cycle thinking and participative backcasting method have allowed to deeply analyse the current system, orientate the problem and explore sustainable solutions through a broad stakeholder participation. A material flow analysis, accompanied by a barrier analysis, has supported the identification of the gaps between the present situation and the 2030 scenario. Eco-design for and from recycling (and a mass _based recycling rate (based on the effective amount of plastic wastes turned into secondary plastics), valorized by a value_based indicator, are the key-points of the action plan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biochar is a carbonaceous material produced through pyrolysis of biomass. One promising application of biochar is phosphorus recovery from wastewater. Phosphorus is a vital nutrient for plant growth, but its use in fertilizers often leads to runoff or leaching. Wastewater treatment plants discharge large amounts of phosphorus-rich wastewater, contributing to eutrophication and ecological harm. Biochar can sorb phosphorus, retaining it in solid form. In this thesis, two composites made of biomass and dolomite or shells exhibited superior phosphate sorption compared to biochar alone, reaching up to 100% sorption. Biochar also finds use in soil remediation, specifically in cleaning up contaminated soil. Polycyclic aromatic hydrocarbons (PAHs), which can be carcinogenic and toxic, can be present in soil. Biochar adsorb PAHs, preventing their leakage or bioaccumulation. Hetero-PAHs, a subclass of PAHs with nitrogen, sulfur, or oxygen atoms in their ring structures, are particularly challenging to degrade. Little is known about their behavior or sorption onto biochar. In this thesis, biochar and activated carbon were effective in immobilizing PAHs and hetero-PAHs in real soils, with rates of immobilization reaching 100%. Biochar performed equally or better than activated carbon, offering a cost-effective alternative due to its lower price. Biochar reduce of metal(loid)s mobility in soil. Metal(loid)s like lead, zinc, and arsenic can contaminate soil through industrial sources, agricultural runoff, and other pollution, and are toxic to plants and animals, rendering the soil unsuitable for agriculture. When biochar is added to contaminated soil, it binds to metal(loid)s, preventing leaching into the environment. A biomass-dolomite composite was compared to activated carbon for immobilizing metal(loid)s in contaminated soils. The composite generally outperformed activated carbon and exhibited the ability to immobilize arsenic. In summary, biochar shows promise for phosphorus recovery, soil remediation, and reducing the mobility of heavy metals, offering cost-effective and sustainable solutions to these environmental challenges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current environmental and socio-economic situation promotes the development of carbon-neutral and sustainable solutions for energy supply. In this framework, the use of hydrogen has been largely indicated as a promising alternative. However, safety aspects are of concern for storage and transportation technologies. Indeed, the current know-how promotes its transportation via pipeline as compressed gas. However, the peculiar properties of hydrogen make the selection of suitable materials challenging. For these reasons, dilution with less reactive species has been considered a short and medium solution. As a way of example, methane-hydrogen mixtures are currently transported via pipelines. In this case, the hydrogen content is limited to 20% in volume, thus keeping the dependence on natural gas sources. On the contrary, hydrogen can be conveniently transported by mixing it with carbon dioxide deriving from carbon capture and storage technologies. In this sense, the interactions between hydrogen and carbon dioxide have been poorly studied. In particular, the effects of composition and operative conditions in the case of accidental release or for direct use in the energy supply chain are unknown. For these reasons, the present work was devoted to the characterization of the chemical phenomena ruling the system. To this aim, laminar flames containing hydrogen and carbon dioxide in the air were investigated experimentally and numerically. Different detailed kinetic mechanisms largely validated were considered at this stage. Significant discrepancies were observed among numerical and experimental data, especially once a fuel consisting of 40%v of hydrogen was studied. This deviation was attributed to the formation of a cellular flame increasing the overall reactivity. Hence, this observation suggests the need for combined models accounting for peculiar physical phenomena and detailed kinetic mechanisms characterizing the hydrogen-containing flames.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solid waste management nowadays is an important environmental issue in country like India. Statistics show that there has been substantial increase in the solid waste generation especially in the urban areas. This trend can be ascribed to rapid population growth, changing lifestyles, food habits, and change in living standards, lack of financial resources, institutional weaknesses, improper choice of technology and public apathy towards municipal solid waste. Waste is directly related to the consumption of resources and dumping to the land. Ecological footprint analysis – an impact assessment environment management tool makes a relationship between two factors- the amount of land required to dispose per capita generated waste. Ecological footprint analysis is a quantitative tool that represents the ecological load imposed on the earth by humans in spatial terms. By quantifying the ecological footprint we can formulate strategies to reduce the footprint and there by having a sustainable living. In this paper, an attempt is made to explore the tool Ecological Footprint Analysis with special emphasis to waste generation. The paper also discusses and analyses the waste footprint of Kochi city,India. An attempt is also made to suggest strategies to reduce the waste footprint thereby making the city sustainable, greener and cleaner