970 resultados para Surface air voids


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the “thermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the “thermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, the “thermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica the “thermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the “thermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the “thermal” forcing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Arctic is an important region in the study of climate change, but monitoring surface temperatures in this region is challenging, particularly in areas covered by sea ice. Here in situ, satellite and reanalysis data were utilised to investigate whether global warming over recent decades could be better estimated by changing the way the Arctic is treated in calculating global mean temperature. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques. Kriging techniques provided the smallest errors in anomaly estimates. Similar accuracies were found for anomalies estimated from in situ meteorological station SAT records using a kriging technique. Whether additional data sources, which are not currently utilised in temperature anomaly datasets, would improve estimates of Arctic surface air temperature anomalies was investigated within the reanalysis testbed and using in situ data. For the reanalysis study, the additional input anomalies were reanalysis data sampled at certain supplementary data source locations over Arctic land and sea ice areas. For the in situ data study, the additional input anomalies over sea ice were surface temperature anomalies derived from the Advanced Very High Resolution Radiometer satellite instruments. The use of additional data sources, particularly those located in the Arctic Ocean over sea ice or on islands in sparsely observed regions, can lead to substantial improvements in the accuracy of estimated anomalies. Decreases in Root Mean Square Error can be up to 0.2K for Arctic-average anomalies and more than 1K for spatially resolved anomalies. Further improvements in accuracy may be accomplished through the use of other data sources.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past a change in temperature of 5°C most often occurred over intervals of thousands of years. According to estimates by the IPCC, in the XXI century is expected an increase in average temperatures in Europe between 1.8 and 4.0°C in the best case caused by emissions of carbon dioxide and other GHG from human activities. As well as on the environment and economic context, global warming will have effects even on road safety. Several studies have already shown how increasing temperature may cause a worsening of some types of road surface damages, especially rutting, a permanent deformation of the road structures consisting in the formation of a longitudinal depression in the wheelpath, mostly due to the rheological behavior of bitumen. This deformation evolves during the hot season because of the heating capacity of the asphalt layers, in fact, the road surface temperature is up to 24°C higher than air. In this thesis, through the use of Wheeltrack test, it was studied the behavior of some types of asphalt concrete mixtures subjected to fatigue testing at different temperatures. The objectives of this study are: to determine the strain variation of different bituminous mixture subjected to fatigue testing at different temperature conditions; to investigate the effect of aggregates, bitumen and mixtures’ characteristics on rutting. Samples were made in the laboratory mostly using an already prepared mixtures, the others preparing the asphalt concrete from the grading curve and bitumen content. The same procedure was performed for each specimen: preparation, compaction using the roller compactor, cooling and heating before the test. The tests were carried out at 40 - 50 - 60°C in order to obtain the evolution of deformation with temperature variation, except some mixtures for which the tests were carried out only at 50°C. In the elaboration of the results were considered testing parameters, component properties and the characteristics of the mixture. Among the testing parameters, temperature was varied for each sample. The mixtures responded to this variation with a different behavior (linear logarithmic and exponential) not directly correlated with the asphalt characteristics; the others parameters as load, passage frequency and test condition were kept constant. According to the results obtained, the main contribution to deformation is due to the type of binder used, it was found that the modified bitumen have a better response than the same mixtures containing traditional bitumen; to the porosity which affects negatively the behavior of the samples and to the homogeneity ceteris paribus. The granulometric composition did not seem to have interfered with the results. Overall has emerged at working temperature, a decisive importance of bitumen composition, than the other characteristics of the mixture, that tends to disappear with heating in favor of increased dependence of rutting resistance from the granulometric composition of the sample considered. In particular it is essential, rather than the mechanical characteristics of the binder, its chemical properties given by the polymeric modification. To confirm some considered results, the maximum bulk density and the air voids content were determined. Tests have been conducted in the laboratories of the Civil Engineering Department at NTNU in Trondheim according to European Standards.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the DRIVE (Diurnal and Regional Variability of Halogen Emissions) ship campaign we investigated the variability of the halogenated very short-lived substances (VSLS) bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) in the marine atmospheric boundary layer in the eastern tropical and subtropical North Atlantic Ocean during May/June 2010. The highest VSLS mixing ratios were found near the Mauritanian coast and close to Lisbon (Portugal). With backward trajectories we identified predominantly air masses from the open North Atlantic with some coastal influence in the Mauritanian upwelling area, due to the prevailing NW winds. The maximum VSLS mixing ratios above the Mauritanian upwelling were 8.92 ppt for bromoform, 3.14 ppt for dibromomethane and 3.29 ppt for methyl iodide, with an observed maximum range of the daily mean up to 50% for bromoform, 26% for dibromomethane and 56% for methyl iodide. The influence of various meteorological parameters - such as wind, surface air pressure, surface air and surface water temperature, humidity and marine atmospheric boundary layer (MABL) height - on VSLS concentrations and fluxes was investigated. The strongest relationship was found between the MABL height and bromoform, dibromomethane and methyl iodide abundances. Lowest MABL heights above the Mauritanian upwelling area coincide with highest VSLS mixing ratios and vice versa above the open ocean. Significant high anti-correlations confirm this relationship for the whole cruise. We conclude that especially above oceanic upwelling systems, in addition to sea-air fluxes, MABL height variations can influence atmospheric VSLS mixing ratios, occasionally leading to elevated atmospheric abundances. This may add to the postulated missing VSLS sources in the Mauritanian upwelling region (Quack et al., 2007).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Near-surface air temperature is an important determinant of the surface energy balance of glaciers and is often represented by a constant linear temperature gradients (TGs) in models. Spatiotemporal variability in 2 m air temperature was measured across the debris-covered Miage Glacier, Italy, over an 89 d period during the 2014 ablation season using a network of 19 stations. Air temperature was found to be strongly dependent upon elevation for most stations, even under varying meteorological conditions and at different times of day, and its spatial variability was well explained by a locally derived mean linear TG (MG–TG) of −0.0088°C m−1. However, local temperature depressions occurred over areas of very thin or patchy debris cover. The MG–TG, together with other air TGs, extrapolated from both on- and off-glacier sites, were applied in a distributed energy-balance model. Compared with piecewise air temperature extrapolation from all on-glacier stations, modelled ablation, using the MG–TG, increased by <1%, increasing to >4% using the environmental ‘lapse rate’. Ice melt under thick debris was relatively insensitive to air temperature, while the effects of different temperature extrapolation methods were strongest at high elevation sites of thin and patchy debris cover.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Satellites have great potential for diagnosis of surface air quality conditions, though reduced sensitivity of satellite instrumentation to the lower troposphere currently impedes their applicability. One objective of the NASA DISCOVER-AQ project is to provide information relevant to improving our ability to relate satellite-observed columns to surface conditions for key trace gases and aerosols. In support of DISCOVER-AQ, this dissertation investigates the degree of correlation between O3 and NO2 column abundance and surface mixing ratio during the four DISCOVER-AQ deployments; characterize the variability of the aircraft in situ and model-simulated O3 and NO2 profiles; and use the WRF-Chem model to further investigate the role of boundary layer mixing in the column-surface connection for the Maryland 2011 deployment, and determine which of the available boundary layer schemes best captures the observations. Simple linear regression analyses suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere may be most meaningful for surface air quality under the conditions associated with the Maryland 2011 campaign, which included generally deep, convective boundary layers, the least wind shear of all four deployments, and few geographical influences on local meteorology, with exception of bay breezes. Hierarchical clustering analysis of the in situ O3 and NO2 profiles indicate that the degree of vertical mixing (defined by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the column vs. surface correlations for many clusters for both O3 and NO2. However, comparisons to the CMAQ model suggest that, among other errors, vertical mixing is overestimated, causing too great a column-surface connection within the model. Finally, the WRF-Chem model, a meteorology model with coupled chemistry, is used to further investigate the impact of vertical mixing on the O3 and NO2 column-surface connection, for an ozone pollution event that occurred on July 26-29, 2011. Five PBL schemes were tested, with no one scheme producing a clear, consistent “best” comparison with the observations for PBLH and pollutant profiles; however, despite improvements, the ACM2 scheme continues to overestimate vertical mixing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, separation methods have been developed for the analysis of anthropogenic transuranium elements plutonium, americium, curium and neptunium from environmental samples contaminated by global nuclear weapons testing and the Chernobyl accident. The analytical methods utilized in this study are based on extraction chromatography. Highly varying atmospheric plutonium isotope concentrations and activity ratios were found at both Kurchatov (Kazakhstan), near the former Semipalatinsk test site, and Sodankylä (Finland). The origin of plutonium is almost impossible to identify at Kurchatov, since hundreds of nuclear tests were performed at the Semipalatinsk test site. In Sodankylä, plutonium in the surface air originated from nuclear weapons testing, conducted mostly by USSR and USA before the sampling year 1963. The variation in americium, curium and neptunium concentrations was great as well in peat samples collected in southern and central Finland in 1986 immediately after the Chernobyl accident. The main source of transuranium contamination in peats was from global nuclear test fallout, although there are wide regional differences in the fraction of Chernobyl-originated activity (of the total activity) for americium, curium and neptunium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An increase in atmospheric carbon dioxide (CO2) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO2 using the National Center for Atmospheric Research (NCAR) coupled Community Land and Community Atmosphere Model. In response to a doubling of CO2, the radiative effect of CO2 causes mean surface air temperature over land to increase by 2.86 ± 0.02 K (± 1 standard error), whereas the physiological effects of CO2 on land plants alone causes air temperature over land to increase by 0.42 ± 0.02 K. Combined, these two effects cause a land surface warming of 3.33 ± 0.03 K. The radiative effect of doubling CO2 increases global runoff by 5.2 ± 0.6%, primarily by increasing precipitation over the continents. The physiological effect increases runoff by 8.4 ± 0.6%, primarily by diminishing evapotranspiration from the continents. Combined, these two effects cause a 14.9 ± 0.7% increase in runoff. Relative humidity remains roughly constant in response to CO2-radiative forcing, whereas relative humidity over land decreases in response to CO2-physiological forcing as a result of reduced plant transpiration. Our study points to an emerging consensus that the physiological effects of increasing atmospheric CO2 on land plants will increase global warming beyond that caused by the radiative effects of CO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For highly compressible normally consolidated saturated soil the compression index, Cc, is not constant over the entire pressure range. However, the ratio of the compression index and the initial specific volume, generally known as the compression ratio, appears to be constant. Thus settlement seems to depend on Cc/(1 + e) rather than Cc alone. Using the theoretical zero air voids line and the generalized compressibility equation for normally consolidated saturated soils, a generalized and simple equation for compression has been derived in the form: C'c = 0.003wL.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study uses the European Centre for Medium-Range Weather Forecasts (ECMWF) model-generated high-resolution 10-day-long predictions for the Year of Tropical Convection (YOTC) 2008. Precipitation forecast skills of the model over the tropics are evaluated against the Tropical Rainfall Measuring Mission (TRMM) estimates. It has been shown that the model was able to capture the monthly to seasonal mean features of tropical convection reasonably. Northward propagation of convective bands over the Bay of Bengal was also forecasted realistically up to 5 days in advance, including the onset phase of the monsoon during the first half of June 2008. However, large errors exist in the daily datasets especially for longer lead times over smaller domains. For shorter lead times (less than 4-5 days), forecast errors are much smaller over the oceans than over land. Moreover, the rate of increase of errors with lead time is rapid over the oceans and is confined to the regions where observed precipitation shows large day-to-day variability. It has been shown that this rapid growth of errors over the oceans is related to the spatial pattern of near-surface air temperature. This is probably due to the one-way air-sea interaction in the atmosphere-only model used for forecasting. While the prescribed surface temperature over the oceans remain realistic at shorter lead times, the pattern and hence the gradient of the surface temperature is not altered with change in atmospheric parameters at longer lead times. It has also been shown that the ECMWF model had considerable difficulties in forecasting very low and very heavy intensity of precipitation over South Asia. The model has too few grids with ``zero'' precipitation and heavy (>40 mm day(-1)) precipitation. On the other hand, drizzle-like precipitation is too frequent in the model compared to that in the TRMM datasets. Further analysis shows that a major source of error in the ECMWF precipitation forecasts is the diurnal cycle over the South Asian monsoon region. The peak intensity of precipitation in the model forecasts over land (ocean) appear about 6 (9) h earlier than that in the observations. Moreover, the amplitude of the diurnal cycle is much higher in the model forecasts compared to that in the TRMM estimates. It has been seen that the phase error of the diurnal cycle increases with forecast lead time. The error in monthly mean 3-hourly precipitation forecasts is about 2-4 times of the error in the daily mean datasets. Thus, effort should be given to improve the phase and amplitude forecast of the diurnal cycle of precipitation from the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tower data collected during the Monsoon-Trough Boundary Layer Experiment (MONTBLEX-90) have been analysed to understand the observed structure of the surface layer over an arid region (Jodhpur) and a moist region (Kharagpur) during active and weak phases of the 1990 southwest monsoon. Turbulent heat and momentum fluxes are estimated by the eddy correlation method using sonic data. The turbulent momentum flux at both Jodhpur and Kharagpur was larger when the winds were stronger, reaching a maximum of the order of 0.5 N m(-2) on 5 and 6 August when a low pressure system was located over the region. The heat flux at Jodhpur is high during weak monsoon days, the maximum being 450 W m(-2), whereas during active days the flux never exceeds 200 W m(-2). At Kharagpur, the flux does not vary significantly between active and weak monsoon days, the maximum in either phase being 160 W m(-2) At Jodhpur, there is significant contrast in the near-surface air temperature, being higher during weak monsoon days as compared to active days. Cloud cover did not vary significantly in both the regions. The turbulent heat flux variation at both the sites appears to be correlated mainly with soil mixture, and less sensitive to cloud cover.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the near surface characteristics and vertical variations based on the observations made at 17.5degreesN and 89degreesE from ORV Sagar Kanya in the north Bay of Bengal during the Bay of Bengal Monsoon Experiment (BOBMEX) carried out in July-August 1999. BOBMEX captured both the active and weak phases of convection. SST remained above the convection threshold throughout the BOBMEX. While the response of the SST to atmospheric forcing was clearly observed, the response of the atmosphere to SST changes was not clear. SST decreased during periods of large scale precipitation, and increased during a weak phase of convection. It is shown that the latent heat flux at comparable wind speeds was about 25-50% lower over the Bay during BOBMEX compared to that over the Indian Ocean during other seasons and tropical west Pacific. On the other hand, the largest variations in the surface daily net heat flux are observed over the Bay during BOBMEX. SST predicted using observed surface fluxes showed that 1-D heat balance model works sometime but not always, and horizontal advection is important. The high resolution Vaisala radiosondes launched during BOBMEX could clearly bring out the changes in the vertical structure of the atmosphere between active and weak phases of convection. Convective Available Potential Energy of the surface air decreased,by 2-3 kJ kg(-1) following convection, and recovered in a time period of one or two days. The mid tropospheric relative humidity and water vapor content, and wind direction show the major changes between the active and weak phases of convection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as ``regressed'' radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.