993 resultados para Surface Gravity-waves
Resumo:
Approximations to the scattering of linear surface gravity waves on water of varying quiescent depth are Investigated by means of a variational approach. Previous authors have used wave modes associated with the constant depth case to approximate the velocity potential, leading to a system of coupled differential equations. Here it is shown that a transformation of the dependent variables results in a much simplified differential equation system which in turn leads to a new multi-mode 'mild-slope' approximation. Further, the effect of adding a bed mode is examined and clarified. A systematic analytic method is presented for evaluating inner products that arise and numerical experiments for two-dimensional scattering are used to examine the performance of the new approximations.
Resumo:
Weakly nonlinear interactions among equatorial waves have been explored in this paper using the adiabatic version of the equatorial beta-plane primitive equations in isobaric coordinates. Assuming rigid lid vertical boundary conditions, the conditions imposed at the surface and at the top of the troposphere were expanded in a Taylor series around two isobaric surfaces in an approach similar to that used in the theory of surface-gravity waves in deep water and capillary-gravity waves. By adopting the asymptotic method of multiple time scales, the equatorial Rossby, mixed Rossby-gravity, inertio-gravity, and Kelvin waves, as well as their vertical structures, were obtained as leading-order solutions. These waves were shown to interact resonantly in a triad configuration at the O(epsilon) approximation. The resonant triads whose wave components satisfy a resonance condition for their vertical structures were found to have the most significant interactions, although this condition is not excluding, unlike the resonant conditions for the zonal wavenumbers and meridional modes. Thus, the analysis has focused on such resonant triads. In general, it was found that for these resonant triads satisfying the resonance condition in the vertical direction, the wave with the highest absolute frequency always acts as an energy source (or sink) for the remaining triad components, as usually occurs in several other physical problems in fluid dynamics. In addition, the zonally symmetric geostrophic modes act as catalyst modes for the energy exchanges between two dispersive waves in a resonant triad. The integration of the reduced asymptotic equations for a single resonant triad shows that, for the initial mode amplitudes characterizing realistic magnitudes of atmospheric flow perturbations, the modes in general exchange energy on low-frequency (intraseasonal and/or even longer) time scales, with the interaction period being dependent upon the initial mode amplitudes. Potential future applications of the present theory to the real atmosphere with the inclusion of diabatic forcing, dissipation, and a more realistic background state are also discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents new laboratory data on the generation of long waves by the shoaling and breaking of transient-focused short-wave groups. Direct offshore radiation of long waves from the breakpoint is shown experimentally for the first time. High spatial resolution enables identification of the relationship between the spatial gradients of the short-wave envelope and the long-wave surface. This relationship is consistent with radiation stress theory even well inside the surf zone and appears as a result of the strong nonlinear forcing associated with the transient group. In shallow water, the change in depth across the group leads to asymmetry in the forcing which generates significant dynamic setup in front of the group during shoaling. Strong amplification of the incident dynamic setup occurs after short-wave breaking. The data show the radiation of a transient long wave dominated by a pulse of positive elevation, preceded and followed by weaker trailing waves with negative elevation. The instantaneous cross-shore structure of the long wave shows the mechanics of the reflection process and the formation of a transient node in the inner surf zone. The wave run-up and relative amplitude of the radiated and incident long waves suggests significant modification of the incident bound wave in the inner surf zone and, the dominance of long waves generated by the breaking process. It is proposed that these conditions occur when the primary short waves and bound wave are not shallow water waves at the breakpoint. A simple criterion is given to determine these conditions, which generally occur for the important case of storm waves.
Resumo:
In order to describe the dynamics of monochromatic surface waves in deep water, we derive a nonlinear and dispersive system of equations for the free surface elevation and the free surface velocity from the Euler equations in infinite depth. From it, and using a multiscale perturbative method, an asymptotic model for small wave steepness ratio is derived. The model is shown to be completely integrable. The Lax pair, the first conserved quantities as well as the symmetries are exhibited. Theoretical and numerical studies reveal that it supports periodic progressive Stokes waves which peak and break in finite time. Comparison between the limiting wave solution of the asymptotic model and classical results is performed.
Resumo:
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.
Resumo:
We study stagnation points of two-dimensional steady gravity free-surface water waves with vorticity. We obtain for example that, in the case where the free surface is an injective curve, the asymptotics at any stagnation point is given either by the “Stokes corner flow” where the free surface has a corner of 120°, or the free surface ends in a horizontal cusp, or the free surface is horizontally flat at the stagnation point. The cusp case is a new feature in the case with vorticity, and it is not possible in the absence of vorticity. In a second main result we exclude horizontally flat singularities in the case that the vorticity is 0 on the free surface. Here the vorticity may have infinitely many sign changes accumulating at the free surface, which makes this case particularly difficult and explains why it has been almost untouched by research so far. Our results are based on calculations in the original variables and do not rely on structural assumptions needed in previous results such as isolated singularities, symmetry and monotonicity.
Resumo:
The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave momentum at critical levels, or levels where the waves break. The first process is treated analytically in this study within the framework of linear theory. The variation of the momentum flux with height is investigated for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady, nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind profiles. This approximation must be extended to third order to obtain momentum flux expressions that are accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On the other hand, the momentum flux divergence (which corresponds to the force on the atmosphere that must be represented in gravity wave drag parameterizations) is given in closed analytical form. The momentum flux expressions are tested for idealized wind profiles, where they become a function of the Richardson number (Ri). These expressions tend, for high Ri, to results by previous authors, where wind profile effects on the surface drag were neglected and critical levels acted as perfect absorbers. The linear results are compared with linear and nonlinear numerical simulations, showing a considerable improvement upon corresponding results derived for higher Ri.
Resumo:
High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.
Resumo:
The drag produced by 2D orographic gravity waves trapped at a temperature inversion and waves propagating in the stably stratified layer existing above are explicitly calculated using linear theory, for a two-layer atmosphere with neutral static stability near the surface, mimicking a well-mixed boundary layer. For realistic values of the flow parameters, trapped lee wave drag, which is given by a closed analytical expression, is comparable to propagating wave drag, especially in moderately to strongly non-hydrostatic conditions. In resonant flow, both drag components substantially exceed the single-layer hydrostatic drag estimate used in most parametrization schemes. Both drag components are optimally amplified for a relatively low-level inversion and Froude numbers Fr ≈ 1. While propagating wave drag is maximized for approximately hydrostatic flow, trapped lee wave drag is maximized for l_2 a = O(1) (where l_2 is the Scorer parameter in the stable layer and a is the mountain width). This roughly happens when the horizontal scale of trapped lee waves matches that of the mountain slope. The drag behavior as a function of Fr for l_2 H = 0.5 (where H is the inversion height) and different values of l2a shows good agreement with numerical simulations. Regions of parameter space with high trapped lee wave drag correlate reasonably well with those where lee wave rotors were found to occur in previous nonlinear numerical simulations including frictional effects. This suggests that trapped lee wave drag, besides giving a relevant contribution to low-level drag exerted on the atmosphere, may also be useful to diagnose lee rotor formation.
Resumo:
Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves, and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic, directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations, obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to implement in drag parametrization schemes. When normalized by the surface drag in the absence of shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux becomes independent of the detailed shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present calculations account for shear-induced amplification or reduction of the surface drag, and partial absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes obtained using this model and a linear numerical model without the WKB approximation are evaluated and compared for two idealized wind profiles with directional shear, for different Richardson numbers (Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate keeping a constant magnitude). These results are complementary, in the Ri > O(1) parameter range, to Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag parametrizations used in global weather and climate prediction models.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.
Resumo:
Mesoscale Gravity Waves (MGWs) are large pressure perturbations that form in the presence of a stable layer at the surface either behind Mesoscale Convective Systems (MCSs) in summer or over warm frontal surfaces behind elevated convection in winter. MGWs are associated with damaging winds, moderate to heavy precipitation, and occasional heat bursts at the surface. The forcing mechanism for MGWs in this study is hypothesized to be evaporative cooling occurring behind a convective line. This evaporatively-cooled air generates a downdraft that then depresses the surface-based stable layer and causes pressure decreases, strong wind speeds and MGW genesis. Using the Weather Research and Forecast Model (WRF) version 3.0, evaporative cooling is simulated using an imposed cold thermal. Sensitivity studies examine the response of MGW structure to different thermal and shear profiles where the strength and depth of the inversion are varied, as well as the amount of wind shear. MGWs are characterized in terms of response variables, such as wind speed perturbations (U'), temperature perturbations (T'), pressure perturbations (P'), potential temperature perturbations (Θ'), and the correlation coefficient (R) between U' and P'. Regime Diagrams portray the response of MGW to the above variables in order to better understand the formation, causes, and intensity of MGWs. The results of this study indicate that shallow, weak surface layers coupled with deep, neutral layers above favor the formation of waves of elevation. Conversely, deep strong surface layers coupled with deep, neutral layers above favor the formation of waves of depression. This is also the type of atmospheric setup that tends to produce substantial surface heating at the surface.
Resumo:
This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.