996 resultados para Supramolecular polymer
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Two heterometallic coordination polymers (CPs) have been prepared using (NiL)-L-II](2)Co-II (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) as nodes and dicyanamido spacers by varying the solvent for synthesis. Structural characterizations revealed that methanol assisted the formation of a two-dimensional (4,4) connected rhombic grid network of (NiL)(2)Co(NCNCN)2](infinity) (1a) whereas relatively less polar acetonitrile afforded a different superstructure {(NiL)(2)Co(NCNCN)(2)]center dot CH3CN}(infinity) (1b) with a two-dimensional (4,4) connected square grid network. The presence of acetonitrile molecules in the structure of 1b seems to change the spatial orientation of the terminal metalloligands NiL] from pseudo-eclipsed in 1a to staggered-like in 1b around the central Co(II). These structural changes in the nodes together with the conformationally flexible dicyanamido spacers, which are cis coordinated to the Co(II) in both trinuclear units, led to the differences in the final 2D network. Variable-temperature magnetic susceptibility measurements revealed that this supramolecular isomerism led to a drastic transition from spin-frustrated antiferromagnetism for 1a to a dominant ferromagnetic behaviour for 1b. The geometrical differences in Ni2Co coordination clusters (CCs) which are scalene triangular in 1a but nearly linear in 1b, are held responsible for the changes of the magnetic properties. The DFT calculations of exchange interactions between metal centres provide a clear evidence of the role played by the fundamental geometrical factors on the nature and magnitude of the magnetic coupling in these pseudo-polymorphic CPs.
Resumo:
Self-assembly of the building block [Cu(oxbe)](-) with Mn(II) led to a novel coordination polymer {[Cu(oxbe)]Mn(H2O)(Cu(oxbe)(DMF)]}(n).nDMF.nH(2)O, where H(3)oxbe is a new dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)-oxamido and DMF = dimethylformamide. The crystal forms in the triclinic system, space group P(1)over-bar, with a = 9.260(4) angstorm, b = 12.833(5) angstrom, c = 15.274(6) angstrom , alpha = 76.18(3)degrees, beta = 82.7(3)degrees, gamma = 82.31(3)degrees, and Z = 2. The crystal structure of the title complex reveals that the two-dimensional bimetallic layers are constructed of (CuMnII)-Mn-II-Cu-II chains linked together by carboxylate bridge and hydrogen bonds help to produce a novel three-dimensional channel-like structure. The magnetic susceptibility measurements (5-300 K) were analyzed by means of the Hamiltonian (H)over-cap = -2J(S)over-cap (Mn)((S)over-cap(Cu1) + (S)over-cap(Cu2)), leading to J = -17.4 cm(-1).
Resumo:
Pseudoacid chlorides of 2,5-bis(4-fluorobenzoyl) terephthalic acid and 4,6-bis(4-fluorobenzoyl) isophthalic acid condense with primary amines to afford diastereomeric bis(hydroxyindolinone)s in good isolated yields and with diamines to give high molecular weight poly(hydroxyindolinone)s. Bis-N-pyrenemethyl bis(hydroxyindolinone)s assemble, even in dipolar solvents such as DMSO, with macrocyclic diimide-sulfones to give [3]pseudorotaxanes stabilized by electronically complementary aromatic π−π-stacking and shape-complementary van der Waals interactions.
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
Herein we describe the design and synthesis of a series of solid-tethered [2]rotaxanes utilising crown ether-naphthalene diimide or crown ether- bipyridinium host guest interactions. TentaGel polystyrene resins were initially modified in a two-stage procedure to azide functionalised beads before the target supramolecular architectures were attached using a copper catalysed “click” procedure. The final assembly was examined using IR spectroscopy and gel-phase 1H High Resolution Magic Angle Spinning (HR MAS) NMR spectroscopy. The HR MAS technique enabled a direct comparison between the solid-tethered architectures and the synthesis and characterisation of analogous solution-based [2]rotaxanes to be made.
Resumo:
Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.
Resumo:
The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.
Resumo:
We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).
Resumo:
In an attempt to generate supramolecular assemblies able to function as self-healing hydrogels, a novel ureido-pyrimidinone (UPy) monomer, 2-(N ′-methacryloyloxyethylureido)-6-(1-adamantyl)-4[1H]-pyrimidinone, was synthesized and then copolymerized with N,N-dimethylacrylamide at four different feed compositions, using a solution of lithium chloride in N,N-dimethylacetamide as the polymerization medium. The assembling process in the resulting copolymers is based on crosslinking through the reversible quadruple hydrogen bonding between side-chain UPy modules. The adamantyl substituent was introduced in order to create a “hydrophobic pocket” that may protect the hydrogen bonds against the disruptive effect of water molecules. Upon hydration to equilibrium, all copolymers generated typical hydrogels when their concentration in the hydrated system was at least 15%. The small-deformation rheometry showed that all hydrated copolymers were hydrogels that maintained a solid-like behavior, and that their extrusion through a syringe needle did not affect significantly this behavior, suggesting a self-healing capacity in these materials. An application as injectable substitutes for the eye's vitreous humor was proposed
Resumo:
Lanthanide coordination polymers of the general formula Ln(2)(L)(5)(NO3)(H2O)(4)](n) (Ln = Eu (1), Tb (2), Gd (3)) supported by a novel aromatic carboxylate ligand 4-((1H-benzod]imidazol-1-yl)methyl)benzoic acid (HL) have been synthesized, characterized, and their photoluminescence behavior is examined. The powder X-ray diffraction patterns of complexes 1-3 showed that 1-3 are isostructural; thus, 1 has been chosen as an example to discuss in detail about the molecular structure by single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1D) helical chain-like coordination polymer consisting of unique unsymmetrical dinuclear lanthanide building blocks. The 1D chains are further linked by the significant intermolecular hydrogen-bonding interactions to form a two-dimensional supramolecular network. The Tb3+ complex exhibits bright green luminescence efficiency in the solid state with a quantum yield of 15%. On the other hand, poor luminescence efficiency has been noted for Eu3+-benzoate complex.
Resumo:
Treatment of the chloro-substituted diboradiferrocene derivative 1 with Me3SiOMe and subsequent hydrolysis resulted in formation of the novel organometallic bis(borinic acid) derivative 3. The assembly of 3 into supramolecular structures via hydrogen bonding and reversible covalent boron-oxygen bond formation was explored. Upon crystallization from acetone or THF one-dimensional chains form in which molecules of 3 alternately serve as hydrogen bond donors and acceptors. The additional OH hydrogens that are not involved in hydrogen bonding within the polymeric chains undergo hydrogen bonding to the solvent molecules. Removal of the solvent was achieved at moderate temperature under high vacuum. While the polymeric chains remain intact, in the absence of the solvent as a hydrogen bond acceptor, short contacts to the Cp rings of neighboring polymer strands lead to a network-like structure. At higher temperatures, further dehydration occurs with formation of B-O-B linkages as confirmed by MALDI-TOF mass spectrometry. Oligomers with up to 15 repeating units (30 ferrocenes) were detected.
Resumo:
Póster presentado en: 11th International Symposium on Applied Bioinorganic Chemistry. 2-5 Diciembre 2011. Barcelona, España (ISABC 2011)
Resumo:
Artículo Polyhedron 2011