949 resultados para Suppression of Fermi acceleration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. We have shown that NF-κB inactivation in dendritic cells (modified DC) converts them into cells that tolerize rather than immunize to specific antigen [1]. Antigen-exposed modified DC prevent priming of immunity, and they suppress previously primed immune responses. Regulatory CD4+ T cells, which can transfer antigen-specific tolerance in an IL-10-dependent fashion, mediate the tolerance. We hypothesized that modified DC exposed to arthritogenic antigen would suppress clinical arthritis after disease onset. Methods Antigen-induced arthritis was induced in C57/Bl6 mice by priming to methylated bovine serum albumin (mBSA) antigen followed by challenge injection of mBSA to one knee. Knee swelling was apparent within 2 days, with peak clinical signs apparent at 5 days. Mice were treated with antigen-exposed modified DC between 2 and 6 days after mBSA challenge to the knee joint. Results Clinical arthritis was suppressed in each group receiving mBSA-exposed modified DC within 4 days compared with mice that received either no DC or keyhole limpet hemocyanin-exposed modified DC. Clinical improvement was associated with mBSA-specific tolerance in mice receiving mBSA-exposed modified DC. Tolerance induction was not impaired by concomitant administration of anti-tumor necrosis factor alpha monoclonal antibody. Subsequent rechallenge with intra-articular IL-1 induced flare of arthritis in all groups, which could be effectively suppressed by a second administration of mBSA-exposed modified DC. Conclusions The data indicate that modified DC induce antigen-specific immune suppression in this model of inflammatory arthritis, even after full clinical expression of the disease. These observations have important implications for antigen-specific therapy of autoimmunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the population of antigen presenting cells, dendritic cells (DCs) are considered the sentinels of the immune system. Besides activating naı¨ ve T cells, DC can directly activate naı¨ ve and memory B cells and are also able to regulate effectors of innate immunity such as NK cells and NKT cells. Increasing evidence indicates that DCs are not only decisive for T cell priming, but are also key players to maintain self-tolerance in vivo. Previous results in our lab have shown that DCs treated with a pharmacological NFkB inhibitor (BAY11–7082) confer suppression to a previously immune response. This suppression was IL-10 dependent and results from the induction of Ag specific CD4+ regulatory T cells. To elucidate the mechanism of suppression induced by administration of Bay treated DC, we used a model of infectious tolerance transfer from DC treated mice to primed recipient mice. Our results show that both CD4 + splenic cells and non T cells from animals injected with Bay treated DC, but not from untreated DC, were capable of transferring the suppression. Moreover, sorted B cells and NK cells could transfer antigenspecific infectious tolerance after administration of Bay treated DC. In addition, this suppressive effect could not be seen either in mice depleted of NK cells nor in NKT deficient mice. These observations highlight the role of several immune cells in the maintenance of tolerance, and impact on the design of immunotherapeutic suppression of autoimmune diseases in which NKT cells are deficient or defective, such as diabetes and lupus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA(1,2). Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in E mu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc- overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap- dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site ( IRES)- dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic- specific expression of the endogenous IRES- dependent form of Cdk11 ( also known as Cdc21 and PITSLRE)(3-5), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in E mu-Myc/+ mice. When accurate translational control is re- established in E mu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post- genomic level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE We investigated the effect of the phosphodiesterase-5 inhibitor, tadalafil, on the acute hypernociception in rat models of arthritis. EXPERIMENTAL APPROACH Rats were treated with either an intra-articular injection of zymosan (1 mg) or surgical transection of the anterior cruciate ligament (as an osteoarthritis model). Controls received saline intra-articular or sham operation respectively. Joint pain was evaluated using the articular incapacitation test measured over 6 h following zymosan or between 4 and 7 days after anterior cruciate ligament transection. Cell counts, tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), and the chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1) were measured in joint exudates 6 h after zymosan. Groups received tadalafil (0.02-0.5 mg.kg(-1) per os) or saline 2 h after intra-articular zymosan. Other groups received the mu-opioid receptor antagonist naloxone or the cGMP inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) before tadalafil. KEY RESULTS Tadalafil dose-dependently inhibited hypernociception in zymosan and osteoarthritis models. In zymosan-induced arthritis, tadalafil significantly decreased cell influx and TNF-alpha release but did not alter IL-1 or CINC-1 levels. Pretreatment with ODQ but not with naloxone prevented the anti-inflammatory effects of tadalafil. CONCLUSIONS AND IMPLICATIONS Therapeutic oral administration of tadalafil provided analgesia mediated by guanylyl cyclase and was independent of the release of endogenous opioids. This effect of tadalafil was associated with a decrease in neutrophil influx and TNF-alpha release in inflamed joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Corticoids have been an option for phimosis treatment since 1993. However, long-term use or repeated cycles pose a concern regarding drug absorption and consequent systemic effects. The aim of this study was to investigate the effect of topical corticoids used in treating phimosis on the hypothalamus-pituitary-adrenal axis in children. Materials and Methods: A total of 31 children were included in the study. Cortisol secretion was evaluated by the measurement of salivary cortisol in saliva samples collected at 9:00 a.m, before starting treatment and after 8 weeks of topical treatment with 0.05% clobetasol propionate. Salivary cortisol was determined by radioimmunoassay. To confirm that use of clobetasol propionate was not detected by the assay, the presence of cortisol circadian rhythm was checked by an extra saliva sample obtained at 11:00 p.m. from 10 children, and was observed to be maintained in all of them. Results: No significant difference in salivary cortisol levels was observed between samples obtained at 9:00 a.m. before starting treatment and after completing treatment when the entire group was analyzed. However, in 2 children the salivary cortisol levels after treatment were lower than the cutoff value (358 ng/dl) assumed to be suggestive of hypothalamus-pituitary-adrenal axis suppression. Conclusions: Topical clobetasol propionate used twice daily for clinical treatment of phimosis does not affect the hypothalamus-pituitary-adrenal axis in most patients. However, salivary cortisol level should be considered as a laboratory marker in long-term treatment or during repeated cycles to detect possible hypothalamus-pituitary-adrenal axis suppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta1 treatment of keratinocytes results in a suppression of differentiation, an induction of extracellular matrix production, and a suppression of growth. In this study we utilized markers specific for each of these functions to explore the signaling pathways involved in mediating these transforming-growth-factor-beta1-induced activities. In the first instance, we found that the induction of extracellular matrix production (characterized by 3TP-Lux reporter activity) was induced in both keratinocytes and a keratinocyte-derived carcinoma cell line, SCC25, in a dose-dependent manner. Furthermore, transforming growth factor beta1 also suppressed the differentiation-specific marker gene, transglutaminase type 1, in both keratinocytes and SCC25 cells. In contrast, transforming growth factor beta1 inhibited proliferation of keratinocytes but did not cause growth inhibition in the SCC25 cells. Transforming-growth-factor-beta1-induced growth inhibition of keratinocytes was characterized by decreases in DNA synthesis, accumulation of hypophosphorylated Rb, and the inhibition of the E2F:Rb-responsive promoter, cdc2, and an induction of the p21 promoter. When the negative regulator of transforming growth factor beta1 signaling, SMAD7, was overexpressed in keratinocytes it could prevent transforming-growth-factor-beta1-induced activation of the 3TP-Lux and the p21 promoter. SMAD7 could also prevent the suppression of the transglutaminase type 1 by transforming growth factor beta1 but it could not inhibit the repression of the cdc2 promoter. These data indicate that the induction of 3TP-Lux and p21 and the suppression of transglutaminase type 1 are mediated by a different proximate signaling pathway to that regulating the suppression of the cdc2 gene. Combined, these data indicate that the regulation of transforming growth factor beta1 actions are complex and involve multiple signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro post-antibiotic effects (PAEs) of eight different concentrations of linezolid against Gram-positive cocci were investigated and the results analysed using the sigmoid E-max model for mathematically modelling the PAE. Mean maximal linezolid PAEs against strains of Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium and Streptococcus pneumoniae were 2.2, 1.8, 2.8, 2.0 and 3.0 h, respectively. Resistance to methicillin (for the staphylococci), vancomycin (for the enterococci) and penicillin (for the pneumococci) had no effect on the duration of the PAE. Results of PAE testing support twice-daily dosing of linezolid in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problem: The present study was performed to explore the effects of pregnancy on experimental autoimmune encephalomyelitis (EAE) induced in Lewis rats by inoculation with myelin basic protein (MBP) (MBP-EAE). Method of study: MBP-EAE was induced in pregnant and non-pregnant rats and severity of disease evaluated. Serum from pregnant and non-pregnant rats was used in standard lymphocyte proliferation assays. Real-time polymerase chain reaction (PCR) was used to investigate the expression of cytokine mRNA in the inflammatory cells obtained from the spinal cord of rats on day 15 after inoculation. Results: Pregnant rats developed less severe disease than non-pregnant rats. Serum from pregnant rats suppressed the proliferation of T lymphocytes in response to MBP. There was significantly increased expression of IL-4. IL-10 and TNF-alpha mRNA in the spinal cord infiltrate of pregnant rats. Conclusion: Circulating humoral factors and alteration in cytokine production by inflammatory cells may contribute to the suppression of EAE in pregnant rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SOX9 is a transcription factor that is expressed in chondrocytes and regulates expression of chondrocyte phenotype related genes. Expression of these genes is known to be suppressed by retinoic acid (RA). We, therefore, examined whether the Sox9 gene expression is regulated by RA in chondrocytes. RA treatment suppressed Sox9 mRNA expression in primary chondrocytes prepared from newborn mouse rib cartilage within 12 h and this suppression lasted at least up to 24 h. The RA suppression of Sox9 mRNA levels was dose-dependent starting at 0.5 muM with a maximum at 1 muM. Nuclear run-on assays revealed that RA reduced the rate of transcription of Sox9 gene. Finally, Western blot analysis indicated that RA suppressed SOX9 protein revels in these chondrocytes. Furthermore, overexpression of SOX9 reversed RA suppression of Col/2a1 enhancer activity. These observations indicate that RA suppresses Sox9 gene expression in chondrocytes at least in part through transcriptional events. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of gonadotrophin releasing hormone (GnRH) agonist implants to suppress ovarian activity and prevent pregnancies, long-term, was examined in heifers and cows maintained under extensive management. At three cattle stations, heifers (2-year-old) and older cows (3- to 16-year-old) were assigned to a control group that received no treatment, or were treated with high-dose (12 mg, Station A) or low-dose (8 mg, Station B and Station Q GnRH agonist implants. The respective numbers of control and GnRH agonist-treated animals (heifers + cows) at each station were: Station A, 20 and 99; Station B, 19 and 89; Station C, 20 and 76. Animals were maintained with 4% bulls and monitored for pregnancy at 2-monthly intervals for approximately 12 months. Pregnancy rates for control heifers and control cows ranged from 60-90% and 80-100%, respectively, depending on the study site. The respective number of animals (heifers + cows) treated with GnRH agonist that conceived, and days to first conception, were: Station A, 9 (9%) and 336 3 days; Station B, 8 (10%) and 244 +/- 13 days; Station C, 20 (26%) and 231 +/- 3 days. Treatment with high-dose GnRH agonist prevented pregnancies for longer (similar to300 days) than treatment with low-dose GnRH agonist (similar to200 days). In the majority of heifers and cows treated with GnRH agonist, ovarian follicular growth was restricted to early antral follicles (2-4 mm). The findings indicate that GnRH agonist implants have considerable potential as a practical technology to suppress ovarian activity and control reproduction in female cattle maintained in extensive rangelands environments. The technology also has broader applications in diverse cattle production systems. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. ReIB activation is required for myeloid DC differentiation. Here, we show that antigen-exposed DCs in which ReIB function is inhibited lack cell surface CD40, prevent priming of immunity, and suppress previously primed immune responses. DCs generated from CD40-deficient mice similarly confer suppression. Regulatory CD4(+) T cells induced by the DCs transfer antigen-specific Infectious tolerance to primed recipients in an interleukin10-dependent fashion. Thus CD40, regulated by ReIB activity, determines the consequences of antigen presentation by myeloid DCs. These observations have significance for autoimmune immunotherapy and suggest a mechanism by which peripheral tolerance might be constitutively maintained by RelB(-) CD40(-) DCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Priming to Ag can inhibit subsequent induction of an immune response to a new epitope incorporated into that Ag, a phenomenon referred to as original antigenic sin. In this study, we show that prior immunity to a virus capsid can inhibit subsequent induction of the IFN-gamma effector T cell response to a novel CD8-restricted antigenic epitope associated with the virus capsid. Inhibition does not involve Ab to the virus capsid, as it is observed in animals lacking B cells. CD8-restricted virus-specific T cell responses are not required, as printing to virus without CTL induction is associated with inhibition. However, IL-10(-/-) mice, in contrast to IL-10(+/+) mice, generate CD8 T cell and Ab responses to novel epitopes incorporated into a virus capsid, even when priming to the capsid has resulted in high titer Ab to the capsid. Furthermore, capsid-primed mice, unable to mount a response to a novel epitope in the capsid protein, are nevertheless able to respond to the same novel epitope delivered independently of the capsid. Thus, inhibition of responsiveness to a novel epitope in a virus-primed animal is a consequence of secretion of IL-10 in response to presented Ag, which inhibits local generation of new CD8 IFN-gamma-secreting effector T cells. Induction of virus- or tumor Ag-specific CD8 effector T cells in the partially Ag-primed host may thus be facilitated by local neutralization of IL-10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C3H/He and C57B1/6 mice were inoculated with 500 Trypanosoma cruzi trypomastigotes (Strain Y). During the acute phase infected mice presented parasitemia and enlargement of lymph nodes and spleens and intracellular parasites were observed in the heart. Examinations of cells derived from spleen and lymph nodes showed increased numbers of IgM and IgG-bearing cells. During the peak of splenomegaly, about day 17 post-infections, splenic lymphocytes showed a marked decrease in responsiveness to T and B-cell mitogens, parasite antigens and plaque forming cells (PFC) to sheep red blood cells (SRBC). Unfractionated or plastic adherent splenic cells from mice, obtained during the acute phase were able to suppress the response to mitogens by lymphocytes from uninfected mice. During the chronic phase. Disappearance of parasitemia and intracellular parasites in the hearts as well as a decrease in spleen size, was observed. These changes preceded the complete recovery of responsiveness to mitogens and T. cruzi antigens by C57B1/6 splenic lymphocytes. However, this recovery was only partial in the C3H/He mice, known to be more sensitive to T. cruzi infection. Partial recovery of humoral immune response also occurred in both strains of mice during the chronic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La inducción de las manifestaciones clínicas de la encefalomielitis autoinmune experimental (EAE) involucra una reacción inmune celular contra determinantes antigénicos del sistema nervioso central (SNC), principalmente contra la proteína básica de mielina (PBM). Atento a la reactividad inmunológica cruzada previamente descrita entre la PBM y la proteína neuronal Sinapsina I, estudiaremos el efecto de la administración oral de moléculas híbridas (LTBSC, LTBSABC) entre la subunidad B de la toxina lábil al calor de Escherichia coli (LTB) con péptidos de Sinapsina (dominios C y ABC de la molécula) sobre el desarrollo de la EAE en ratas Wistar. Se administrarán oralmente los antígenos híbridos de LTB, LTB y péptidos de sinapsina no acoplados previa o posteriormente a la inducción activa de la EAE. Se estudiará la aparición de las manifestaciones clínicas de la enfermedad y se caracterizará la respuesta histopatológica e inmunológica (reacción de DTH, activación de linfocitos T, respuesta inmune humoral, vías de activación de macrófagos, patrón de citocinas) y los eventos celulares e inmunes desencadenados a nivel local luego de administrar los antígenos recombinantes en sistemas in vivo e in vitro. Estos estudios acerca de la respuesta autoinmune contra componentes de mielina y sinaptosomales en EAE tienen como objetivo poder comprender los diferentes mecanismos subyacentes involucrados en el desarrollo y regulación de esta enfermedad experimental. Específicamente este proyecto relacionado a la supresión de los síntomas clínicos como así también las alteraciones neuropatológicas del SNC de la EAE a través de un proceso de supresión oral de la enfermedad no invasivo utilizando tanto antígenos mielínicos como sinaptosomales fusionados a subunidades B (atóxicas) de la enterotoxina lábil al calor de E. coli (LTB), es de suma importancia para un estudio posterior en las patologías humanas relacionadas y su uso en el diagnóstico, pronóstico y/o terapia de las mismas.