153 resultados para Superstring
Resumo:
The free action for massless Ramond-Ramond fields is derived from closed superstring field theory using the techniques of Siegel and Zwiebach. For the uncompactified Type IIB superstring, this gives a manifestly Lorentz-covariant action for a self-dual five-form field strength. Upon compactification to four dimensions, the action depends on a U(1) field strength from 4D N = 2 supergravity. However, unlike the standard Maxwell action, this action is manifestly invariant under the electromagnetic duality transformation which rotates F-mn into epsilon(mnpq)F(pq).
Resumo:
We use the non-minimal pure spinor formalism to compute in a super-Poincare covariant manner the four-point massless one and two-loop open superstring amplitudes, and the gauge anomaly of the six-point one-loop amplitude. All of these amplitudes are expressed as integrals of ten-dimensional superfields in a pure spinor superspace which involves five theta coordinates covariantly contracted with three pure spinors. The bosonic contribution to these amplitudes agrees with the standard results, and we demonstrate identities which show how the t(8) and epsilon(10) tensors naturally emerge from integrals over pure spinor superspace.
Resumo:
The conventional S-matrix approach to the (tree level) open string low energy effective lagrangian assumes that, in order to obtain all its bosonic alpha'(N) order terms, it is necessary to know the open string (tree level) (N + 2)-point amplitude of massless bosons, at least expanded at that order in alpha'. In this work we clarify that the previous claim is indeed valid for the bosonic open string, but for the supersymmetric one the situation is much more better than that: there are constraints in the kinematical bosonic terms of the amplitude (probably due to Spacetime Supersymmetry) such that a much lower open superstring n-point amplitude is needed to find all the alpha'(N) order terms. In this 'revisited' S-matrix approach we have checked that, at least up to alpha'(4) order, using these kinematical constraints and only the known open superstring 4-point amplitude, it is possible to determine all the bosonic terms of the low energy effective lagrangian. The sort of results that we obtain seem to agree completely with the ones achieved by the method of BPS configurations, proposed about ten years ago. By means of the KLT relations, our results can be mapped to the NS-NS sector of the low energy effective lagrangian of the type II string theories implying that there one can also find kinematical constraints in the N -point amplitudes and that important informations can be inferred, at least up to alpha'(4) order, by only using the (tree level) 4-point amplitude.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The free action for the massless sector of the type II superstring was recently constructed using closed Ramond-Neveo-Schwarz superstring field theory. The supersymmetry transformations of this action are shown to satisfy an N = 2 D = 10 supersymmetry algebra with Ramond-Ramond central charges.
Resumo:
Using the manifestly spacetime supersymmetric description of the four-dimensional open superstring, we construct the vertex operator in superspace for the first massive state. This construction provides an N = 1 D = 4 superspace representation of the massive spin-2 multiplet. © 1997 Published by Elsevier Science B.V.
Resumo:
It was earlier shown that an SO(9,1) θα spinor variable can be constructed from RNS matter and ghost fields. θα has a bosonic world-sheet super-partner λα which plays the role of a twistor variable, satisfying λΓμ λ = ∂xμ + iθΓμ ∂θ. For Type IIA superstrings, the left-moving [θL α, λL α] and right-moving [θRα, λRα] can be combined into 32-component SO(10,1) spinors [θA, λA]. This suggests that λAΓAB 11 λB = 2λL αλRα can be interpreted as momentum in the eleventh direction. Evidence for this interpretation comes from the zero-momentum vertex operators of the Type IIA superstring and from consideration of DD-branes. As in the work of Bars, one finds an SO(10,2) structure for the Type IIA superstring and an SO(9, 1) × SO(2, 1) structure for the Type IIB superstring. © 1997 Elsevier Science B.V.
Resumo:
Using the manifestly spacetime-supersymmetric version of open superstring field theory, we construct the free action for the first massive states of the open superstring compactified to four dimensions. This action is in N = 1 D = 4 superspace and describes a massive spin-2 multiplet coupled to two massive scalar multiplets. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We write the BRST operator of the N = 1 superstring as, Q = e-R(1/2πiφdzγ2b)eR where y and b are super-reparameterization ghosts. This provides a trivial proof that Q is nilpotent. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The superstring is quantized in a manner which manifestly preserves a U(5) subgroup of the (Wick-rotated) ten-dimensional super-Poincaré invariance. This description of the superstring contains critical N = 2 worldsheet superconformal invariance and is a natural covariantization of the U(4)-invariant light-cone Green-Schwarz description. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A sigma model action with N = 2 D = 6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond - Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 × S 3, the action reduces to one found earlier with Vafa and Witten. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension. © 2000 Elsevier Science B.V.
Resumo:
Using pure spinors, the superstring is covariantly quantized. For the first time, massless vertex operators are constructed and scattering amplitudes are computed in a manifestly ten-dimensional super-Poincaré covariant manner. Quantizable non-linear sigma model actions are constructed for the superstring in curved backgrounds, including the AdS 5 × S 5 background with Ramond-Ramond flux.
Resumo:
Using pure spinors, the superstring was recently quantized in a manifestly ten-dimensional super-Poincaré covariant manner and a covariant prescription was given for tree-level scattering amplitudes. In this paper, we prove that this prescription is cyclically symmetric and, for the scattering of an arbitrary number of massless bosons and up to four massless fermions, it agrees with the standard Ramond-Neveu-Schwarz prescription.
Resumo:
A manifestly super-Poincaré covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables.