82 resultados para Superovulation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effect of treating mares with equine pituitary extract (EPE) alone or in combination with hCG on the recovery rate of immature follicles by transvaginal follicular aspiration (ovum pick-up; OPU). Ten normally cycling crossbred mares aged 3-15 years and weighing 350-400 kg were subjected to each of three treatments in a random sequence with each exposure to a new treatment separated by a rest cycle during which a spontaneous ovulation occurred. The treatments were (1) superovulated with 25 mg EPE and treated with 2500 IU hCG, (2) superovulation with 25 mg EPE, and (3) control (no exogenous treatment). Treatments 7 days after spontaneous ovulation; and all the follicles > 10 mm were aspirated 24 h after the largest follicle achieved a diameter of 27-30 mm for control group, and most follicles reached 22-27 mm for the EPE alone treatment. To the group EPE+hCG, when the follicles reached 22-27 mm, hCG was administered, 24 h before OPU. Superovulation increased the number of follicles available for aspiration. The total number of follicles available for aspiration was 61 in the EPE/hCG group. 63 in the EPE group and 42 in the control. The proportion of follicles aspirated varied from 63.5% to 73.8%. Oocyte recovery rate ranged from 15.0% to 16.7% and the proportion of mares that yielded at least one oocyte was 70% (7/10) in the EPE/hCG, 60% (6/10) in the EPE alone and 50% (5/10) in control group. The EPE/hCG treatment had a higher proportion of follicles with expanded granulose cells (64.4%) than the control (3.3%: p < 0.05) and the EPE treatment (25.0%). The intervals from spontaneous ovulation to aspiration were similar for all treatments (11-12 days). However, superovulatory treatment significantly increased the aspiration to ovulation interval from 15 +/- 4 days for control to 27 +/- 15 days for EPE (p < 0.05) and to 23 +/- 13 days for EPE/hCG treatment with commensurate increases in the time between spontaneous ovulations. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present short review superovulation treatments commonly used for Bos taurus and/or Bos indicus will be addressed with emphasis in recent superstimulation protocols associated with pharmacological manipulation of the follicular dynamics to improve donor management and potentially embryo yield. Results obtained after superovulation treatments in which the time of LH surge is selectively delayed as an attempt to improve embryo yield are presented and discussed. (C) 2001 by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embryo transfer is a biotechnology that has been used worldwide to increase the production of offspring from female bovines. Treatments to induce multiple ovulations (superovulation) have evolved from superstimulatory protocols that depended upon detection of oestrus to treatments that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-timed AI (FTAI). The protocols associated with FTAI facilitate animal handling and produce at least as many viably embryos as conventional treatment protocols that required detection of oestrus. Recent knowledge regarding LH receptors (LHR) and follicular development can be applied to improve embryo transfer protocols. In fact, improvements in the superstimulatory treatment called the 'P-36 protocol', which include hormones that stimulate LHR, indicate that adjustments related to LHR availability may increase bovine embryo yield compared with conventional protocols based on the detection of oestrus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vacas da raça Holandesa não-lactantes, distribuídas em dois grupos, foram sincronizadas com o protocolo Ovsynch modificado. No dia sete (dia 0 = dia do segundo GnRH), o grupo 7 (G-7; n=19) recebeu CIDR usado previamente por cinco dias e 100mcg de GnRH, e o grupo 14 (G-14; n=21), CIDR e 25mg de PGF2alfa. No dia 14 foi aspirado o folículo dominante (FD), trocado o CIDR usado por um novo e foram aplicados 25mg de PGF2alfa. Iniciou-se o tratamento com FSH 36h depois, removeu-se o CIDR com o sétimo FSH e aplicou-se GnRH 36h depois. As inseminações foram feitas 12 e 24h depois. Recuperaram-se os embriões sete dias depois da inseminação artificial. O diâmetro do FD no G-7 foi 13,1±0,57mm no dia sete e 11,2±0,57mm no dia 14. O diâmetro FD persistente no G-14 aumentou de 12,6±0,55mm no dia sete para 16,4±0,55mm no dia 14 (P<0,001). O número de folículos >8mm, 48h após o início do tratamento com FSH, foi maior (P<0,05) no G-7 (15,6±0,05) que no G-14 (12,5±0,05). Não foi detectado efeito de tratamento sobre o número de corpos lúteos e de embriões. O menor intervalo entre recrutamentos foliculares aumentou o número de folículos recrutados, porém não alterou a quantidade e a qualidade dos embriões produzidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dez vacas multíparas, secas, foram distribuídas aleatoriamente em dois grupos de cinco animais cada. Nos dias 8 a 12 do diestro, o primeiro grupo recebeu 100 ml de anti-soro contra líquido folicular livre de esteróides (anti-LFb) produzido em ovelhas ovariectomizadas. O segundo grupo (controle) recebeu 100 ml de soro de ovelhas não-imunizadas. Seis horas após a aplicação, os dois grupos foram superovulados com FSH (18 NIH-FSH-S1 unidades) e LH (0,29 NIH-LH-S1 unidades) administrados em quantidades decrescentes durante quatro dias. Na manhã do terceiro dia, foi administrada uma dose luteolítica de cloprostenol. Duas inseminações foram realizadas 48 e 60 horas após. Os embriões foram recuperados pelo método cervical 7 dias após a primeira inseminação. Amostras de sangue foram coletadas durante todo o período experimental para determinar, por radioimunoensaio, as concentrações plasmáticas de FSH, LH e progesterona. Todas as vacas do grupo imunizado e 3 do grupo controle apresentaram mais de 2 CL. Não existiu diferença significativa (P>0,05) na taxa de ovulação entre os grupos imunizado e controle (14,4 e 9,9, respectivamente). O número de embriões recuperado não foi significativamente diferente (P>0,05) entre os grupos, embora o grupo imunizado tenha apresentado maior número de embriões transferíveis (3,4 ± 1,0 versus 0,8 ± 0,4, P<0,05). As concentrações de gonadotrofinas plasmáticas não foram correlacionadas com a taxa de ovulação ou com o número de embriões recuperados. As concentrações de progesterona plasmática foram positivamente correlacionadas (r = 0,88, P<0,01) com a taxa de ovulação. Os resultados sugerem que o anti-LFb, aplicado antes da superovulação, não reduz a variabilidade da resposta ovariana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to estimate the repeatability of transferable embryos in Holstein cows and to evaluate the effects of the year, season and order of the superovulation on the number of total structures, transferable embryos, non-transferable embryos and ovules. Four hundred and eighty-six superovulations were used in the analysis. The year of superovulation affected significantly all traits (P<0.01); however, we did not find effects of the season of the year. Superovulation order affected the total structures (P<0.01) and non-transferable embryos (P<0.05). The repeatability of the transferable embryo was 0.28 +/- 0.05. Positive correlations were found among total structures and transferable embryos (0.73) and total structure and ovule (0.51).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B®) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V® 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin®, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean ± S.E.M.) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8 ± 1.8, 6.1 ± 1.3, 51.5), P48 (12.6 ± 1.9, 7.1 ± 1.0, 52.3), P60 (10.5 ± 1.6, 5.7 ± 1.3, 40.0) and D60 (10.3 ± 1.7, 5.0 ± 1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol. © 2002 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to analyze and report field data focusing on the effect of type of progesterone-releasing vaginal insert and dose of pLH on embryo production, following a superstimulatory protocol involving fixed-time artificial insemination (FTAI) in Nelore cattle (Bos taurus indicus). Donor heifers and cows (n = 68; 136 superstimulations over 2 years) received an intravaginal, progesterone-releasing insert (CIDR® or DIB®, with 1.9 or 1.0 g progesterone, respectively) and 3-4 mg of estradiol benzoate (EB) i.m. at random stages of the estrous cycle. Five days later (designated Day 0), cattle were superstimulated with a total of 120-200 mg of pFSH (Folltropin-V®), given twice daily in decreasing doses from Days 0 to 3. All cattle received two luteolytic doses of PGF2α at 08:00 and 20:00 h on Day 2 and progesterone inserts were removed at 20:00 h on Day 3 (36 h after the first PGF2α injection). Ovulation was induced with pLH (Lutropin-V®, 12.5 or 25 mg, i.m.) at 08:00 h on Day 4 with FTAI 12, 24 and in several cases, 36 h later. Embryos were recovered on Days 11 or 12, graded and transferred to synchronous recipients. Overall, the mean (±S.E.M.) number of total ova/embryos (13.3 ± 0.8) and viable embryos (9.4 ± 0.6) and pregnancy rate (43.5%; 528/1213) did not differ among groups, but embryo viability rate (overall, 70.8%) was higher in donors with a DIB (72.3%) than a CIDR (68.3%, P = 0.007). In conclusion, the administration of pLH 12 h after progesterone removal in a progestin-based superstimulatory protocol facilitated fixed-time AI in Nelore donors, with embryo production, embryo viability and pregnancy rates after embryo transfer, comparable to published results where estrus detection and AI was done. Results suggested a possible alternative, which would eliminate the need for estrus detection in donors. © 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n = 12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B ®) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2α (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38 h after the first PGF2α injection, blood sampling and ovarian ultrasonography took place every 4 h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7 ± 4.9 and 72.3 ± 3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin ®, total dose = 200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2α, to minimize stress, only seven blood samples were collected at 4 h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6 ± 1.6 and 59.5 ± 1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0 ± 2.6 ng/ml (mean ± S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12 h before the LH surge observed after an induced estrus without ovarian superstimulation. © 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades several hormonal treatments to induce multiple ovulation and embryo transfer (MOET) have been developed. Tight control of the time of ovulation allowed the use of fixed-time artificial insemination (FTAI) in embryos donors, facilitating animal management. Although, protocols that allow FTAI have evolved and yield as much embryo as conventional protocols that requires estrus detection, substantial increase in viable embryo production has not been observed in superestimulated bovine cattle. The present mini-review put emphasis on superstimulatory protocols in which the last two doses of pFSH are replaced by eCG or LH. Recent results indicate that an extra LH stimulus (using eCG or LH), on the last day of P-36 superestimulatory treatment, seems to improve transferable embryo yield in both Bos taurus and Bos indicus cattle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex biological systems require sophisticated approach for analysis, once there are variables with distinct measure levels to be analyzed at the same time in them. The mouse assisted reproduction, e.g. superovulation and viable embryos production, demand a multidisciplinary control of the environment, endocrinologic and physiologic status of the animals, of the stressing factors and the conditions which are favorable to their copulation and subsequently oocyte fertilization. In the past, analyses with a simplified approach of these variables were not well succeeded to predict the situations that viable embryos were obtained in mice. Thereby, we suggest a more complex approach with association of the Cluster Analysis and the Artificial Neural Network to predict embryo production in superovulated mice. A robust prediction could avoid the useless death of animals and would allow an ethic management of them in experiments requiring mouse embryo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT(2) receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus-oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary objective of this study was to examine the follicular and ovulatory responses following treatment with pFSH in association with ablation-induced or spontaneous follicular wave emergence or follicle deviation during diestrus in crossbred (Mangalarga × Arabian) and Brazilian Warmblood mares with a propensity for spontaneous multiple ovulations; secondary considerations were given to the collection of embryos In Experiment 1, crossbred mares were administered (im) saline (control, n= 7) or pFSH (25 mg) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm (n= 7) or ≥20 mm (n= 7) or, after pre-treatment ovulation (Day 0) on Day 6 (n= 7) In Experiment 2, crossbred mares were administered (im) saline (control, n= 10) or a larger dose of pFSH (50 mg, n= 7) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm In Experiment 3, Brazilian Warmblood mares were administered (im) saline (control, n= 7), pFSH (25 mg, n= 7 or 50 mg, n= 5) or EPE (12.5 mg, n= 7) as a positive control on Day 6 Ultrasonic technology was used to ablate all follicles ≥8 mm and to monitor follicular development and detect ovulation Treatment with pFSH or EPE was done twice daily until the largest follicle reached ≥32 mm; thereafter, hCG (2500 IU) was administered (iv) when the largest follicle reached ≥35 mm Artificial insemination was done 12 h after hCG and embryo collections were done 8 d after post-treatment ovulations In Experiments 1 and 2, treatment of crossbred mares with pFSH post-ablation in association with the expected time of wave emergence or follicle deviation did not (P> 0.05) enhance the follicular or ovulatory responses or collection of embryos compared to controls In Experiment 3, although the enhanced ovulatory response of mares to EPE at the expected time of spontaneous wave emergence was not different (P> 0.05) from controls, it was greater (P< 0.05) than the response to pFSH In conclusion, the novelty of using follicle ablation prior to pFSH treatment at the time of wave emergence or follicle deviation did not enhance the follicular or ovulatory responses or collection of embryos to treatment in crossbred mares In addition, the hypothesis that Brazilian Warmblood mares with a greater propensity for spontaneous multiple ovulations are as responsive to pFSH compared to EPE was not supported Thus, the combined experimental results of the present study continue to support the general consensus that pFSH is relatively ineffective for follicular superstimulation/superovulation in mares © 2012 Elsevier B.V.