362 resultados para Supercritical
Resumo:
The supercritical fluid technology has been target of many pharmaceuticals investigations in particles production for almost 35 years. This is due to the great advantages it offers over others technologies currently used for the same purpose. A brief history is presented, as well the classification of supercritical technology based on the role that the supercritical fluid (carbon dioxide) performs in the process.
Resumo:
The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.
Resumo:
The magnetically induced splay Fréedericksz transition is reexamined to look for pattern forming phenomena slightly above or below criticality. By using our traditional scheme of stochastic nematodynamic equations, situations are, respectively, found of transient and permanent predominance of transversal periodicities (wave numbers) along the direction perpendicular to the initial orientation within the sample. The relevance of these predictions in relation with recent observations in the electrically driven splay Fréedericksz transition, and in general with other pattern forming phenomena, is stressed.
Resumo:
It is well established that at ambient and supercooled conditions water can be described as a percolating network of H bonds. This work is aimed at identifying, by neutron diffraction experiments combined with computer simulations, a percolation line in supercritical water, where the extension of the H-bond network is in question. It is found that in real supercritical water liquidlike states are observed at or above the percolation threshold, while below this threshold gaslike water forms small, sheetlike configurations. Inspection of the three-dimensional arrangement of water molecules suggests that crossing of this percolation line is accompa- nied by a change of symmetry in the first neighboring shell of molecules from trigonal below the line to tetrahedral above.
Resumo:
The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.
Resumo:
Micronization techniques based on supercritical fluids (SCFs) are promising for the production of particles with controlled size and distribution. The interest of the pharmaceutical field in the development of SCF techniques is increasing due to the need for clean processes, reduced consumption of energy, and to their several possible applications. The food field is still far from the application of SCF micronization techniques, but there is increasing interest mainly for the processing of products with high added value. The aim of this study is to use SCF micronization techniques for the production of particles of pharmaceuticals and food ingredients with controlled particle size and morphology, and to look at their production on semi-industrial scale. The results obtained are also used to understand the processes from the perspective of broader application within the pharmaceutical and food industries. Certain pharmaceuticals, a biopolymer and a food ingredient have been tested using supercritical antisolvent micronization (SAS) or supercritical assisted atomization (SAA) techniques. The reproducibility of the SAS technique has been studied using physically different apparatuses and on both laboratory and semi-industrial scale. Moreover, a comparison between semi-continuous and batch mode has been performed. The behaviour of the system during the SAS process has been observed using a windowed precipitation vessel. The micronized powders have been characterized by particle size and distribution, morphology and crystallinity. Several analyses have been performed to verify if the SCF process modified the structure of the compound or caused degradation or contamination of the product. The different powder morphologies obtained have been linked to the position of the process operating point with respect to the vapour-liquid equilibrium (VLE) of the systems studied, that is, mainly to the position of the mixture critical point (MCP) of the mixture. Spherical micro, submicro- and nanoparticles, expanded microparticles (balloons) and crystals were obtained by SAS. The obtained particles were amorphous or with different degrees of crystallinity and, in some cases, had different pseudo-polymorphic or polymorphic forms. A compound that could not be processed using SAS was micronized by SAA, and amorphous particles were obtained, stable in vials at room temperature. The SCF micronization techniques studied proved to be effective and versatile for the production of particles for several uses. Furthermore, the findings of this study and the acquired knowledge of the proposed processes can allow a more conscious application of SCF techniques to obtain products with the desired characteristics and enable the use of their principles for broader applications.
Resumo:
This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.
Resumo:
The conversion of glycerol in supercritical water (SCW) was studied at 510-550 °C and a pressure of 350 bars using both a bed of inert and non-porous ZrO2 particles (hydrothermal experiments), and a bed of a 1% Ru/ZrO2 catalyst. Experiments were conducted with a glycerol concentration of 5 wt% in a continuous isothermal fixed-bed reactor at a residence time between 2 and 10 s. Hydrothermolysis of glycerol formed water-soluble products such as acetaldehyde, acetic acid, hydroxyacetone and acrolein, and gases like H2, CO and CO2. The catalyst enhanced the formation of acetic acid, inhibited the formation of acrolein, and promoted gasification of the glycerol decomposition products. Hydrogen and carbon oxides were the main gases produced in the catalytic experiments, with minor amounts of methane and ethylene. Complete glycerol conversion was achieved at a residence time of 8.5 s at 510 °C, and at around 5 s at 550 °C with the 1 wt% Ru/ZrO2 catalyst. The catalyst was not active enough to achieve complete gasification since high yields of primary products like acetic acid and acetaldehyde were still present. Carbon balances were between 80 and 60% in the catalytic experiments, decreasing continuously as the residence time was increased. This was attributed partially to the formation of methanol and acetaldehyde, which were not recovered and analyzed efficiently in our set-up, but also to the formation of carbon deposits. Carbon deposition was not observed on the catalyst particles but on the surface of the inert zirconia particles, especially at high residence time. This was related to the higher concentration of acetic acid and other acidic species in the catalytic experiments, which may polymerize to form tar-like carbon precursors. Because of carbon deposition, hydrogen yields were significantly lower than expected; for instance at 550 °C the hydrogen yield potential was only 50% of the stoichiometric value.
Resumo:
From the boiler design point of view, it is imperative to know and understand the operation of the boiler. Since comprehensive measurement of a large furnace is impossible, the furnace can be modeled in order to study its behavior and phenomena. This requires the used model to be validated to correspond with the physical furnace behavior. In this thesis, a three dimensional furnace model is validated to match a bituminous coal utilizing, supercritical once-through circulating fluidized bed combustor based on measurement data. The validated model is used for analyzing the furnace heat transfer. Other heat transfer analysis methods are energy balance method based on tube surface temperature measurements and a method based on measured temperature difference between the tube crest and the fin. The latter method was developed in the thesis using Fluent-software. In the theory part, literature is reviewed and the fundamental aspects of circulating fluidized bed are discussed. These aspects are solid particle behavior in fluidization known as hydrodynamics, behavior of fuel and combustion and heat transfer. Fundamental aspects of modeling are also presented.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.
Resumo:
Maceration and supercritical fluid extraction were used to prepare extracts from parts of plants (Holostylis reniformis) collected in two different regions of Brazil. ¹H NMR, HPLC-DAD-ESI/MS, HPLC-DAD, GC-MS, and chemometric techniques were used to analyse lignans in the extracts and showed that yields of SFE-CO2 were less than or equal to those of hexane maceration extracts. These analyses, in conjunction with the concentrations of aliphatic hydrocarbons, fatty acids and their methyl and ethyl derivatives in the extracts, also allowed the chemical composition of parts and provenance of the plant to be differentiated.
Resumo:
Hen eggs and oats (Avena Sativa) are important materials for the food industry. Today, instead of merely satisfying the feeling of hunger, consumers are asking for healthier, biologically active and environmentally friendly products. The growing awareness of consumers’ increasing demands presents a great challenge to the food industry to develop more sustainable products and utilise modern and effective techniques. The modification of yolk fatty acid composition by means of feed supplements is well understood. Egg yolk phospholipids are polar lipids and are used in several applications including food, cosmetics, pharmaceuticals, and special nutrients. Egg yolk phospholipids are excellent emulsifiers, typically sold as mixtures of phospholipids, triacylglycerols, and cholesterol. However, highly purified and characterised phospholipids are needed in several sophisticated applications. Industrial fractionation of phospholipids is usually based on organic solvents. With these fractionation techniques, some harmful residues of organic solvents may cause problems in further processing. The objective of the present study was to investigate the methods to improve the functional properties of eggs, to develop techniques to isolate the fractions responsible for the specific functional properties of egg yolk lipids, and to apply the developed techniques to plant-based materials, too. Fractionation techniques based on supercritical fluids were utilised for the separation of the lipid fractions of eggs and oats. The chemical and functional characterisation of the fractions were performed, and the produced oat polar lipid fractions were tested as protective barrier in encapsulation processes. Modifying the fatty acid compositions of egg yolks with different types of oil supplements in feed had no affect on their functional or sensory properties. Based on the results of functional and sensory analysis, it is evident that eggs with modified fatty acid compositions are usable in several industrial applications. These applications include liquid egg yolk products used in mayonnaise and salad dressings. Egg yolk powders were utilised in different kinds of fractionation processes. The precipitation method developed in this study resembles the supercritical anti-solvent method, which is typically used in the pharmaceutical industry. With pilot scale supercritical fluid processes, non-polar lipids and polar lipids were successfully separated from commercially produced egg yolk powder and oat flakes. The egg and oat-based polar lipid fractions showed high purities, and the corresponding delipidated fractions produced using supercritical techniques offer interesting starting materials for the further production of bioactive compounds. The oat polar lipid fraction contained especially digalactosyadiacylglycerol, which was shown to have valuable functional properties in the encapsulation of probiotics.
Resumo:
In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic) acids from PFAD-Palm Fatty Acids Distillates was used as a case study.
Resumo:
Residual fibers from palm oil production are a good source of carotene, since they contain more than 5% of the original oil, with about 5000 ppm of carotenoids. As carotenoids are thermosensitive molecules, supercritical CO2 can be used for oil recovery, because this technique employs low temperatures. In this work results of oil extraction experiments from pressed palm oil fibers are shown. Fibers were from AGROPALMA, an industry which is located in Tailândia (Pará, Brazil). Extractions were carried out at 200, 250 and 300 bar and at temperatures of 45 and 55oC. Oil was analyzed by UV/vis spectrophotometry for total carotene determination. Results showed a large increase in extraction rate from 200 to 250 bar and a small variation from 250 to 300 bar. The total amount of carotenes did not increase in the course of extraction at 300 bar, but it showed a large increase at 200 and at 250 bar. Free fatty acids are present in amounts larger than those found in commercial oils.