976 resultados para Superconducting tape
Resumo:
The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.
Resumo:
In the superconducting state, YBa2Cu3O7 absorbs electromagnetic radiation over a wide range of frequencies (8 MHz-9 GHz). The absorption is extremely sensitive to temperature, particle size and the magnetic field and depends crucially on the presence of oxygen. A possible explanation for the phenomenon based on the formation of Josephson junctions is suggested.
Resumo:
Photoemission spectra of YBa2Cu3O7-δ in the normal and superconducting states provide direct evidence for dimerization of oxygen below Tc. Cu2+ is found to reduce to Cu1+ concomitantly. These changes may be of vital importance to the mechanism of high-temperature superconductivity.
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.
Resumo:
Social insects such as ants, bees, wasps and termites exhibit extreme forms of altruism where some individuals remain sterile and assist other individuals in reproduction. Hamilton's inclusive fitness theory provides a powerful framework for investigating the evolution of such altruism. Using the paper wasp Ropalidia marginata, we have quantified and delineated the role of ecological, physiological, genetic and demographic factors in social evolution. An interesting feature of the models we have developed is their symmetry so that either altruism or selfishness can evolve, depending on the numerical values of various parameters. This suggests that selfish/solitary behaviour must occasionally re-emerge even from the eusocial state, It is useful to contemplate expected intermediate states during such potential reversals. We can perhaps envisage three successive steps in such a hypothetical process: i) workers revolt against the hegemony of the queen and challenge her status as the sole reproductive, ii) workers stop producing queens and one or more of them function as egg layers (functional queen/s) capable of producing both haploid as well as diploid offspring and iii) social evolution reverses completely so that a eusocial species becomes solitary, at least facultatively. It appears that the third step, namely transition from eusociality to the solitary state, is rare and has been restricted to transitions from the primitively eusocial state only. The absence of transitions from the highly eusocial state to the solitary state may be attributed to a number of 'preventing mechanisms' such as (a) queen control of workers (b) loss of spermathecae and ability to mate (c) morphological specialization (d) caste polyethism and (e) homeostasis, which must each make the transition difficult and, taken together, perhaps very difficult. However, the discovery of a transition from the highly eusocial to the solitary state can hardly he ruled out, given that little or no effort has gone into its detection. In this paper I discuss social evolution and its possible reversal and cite potential examples of stages in the transition from the social to the solitary.
Resumo:
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.
Resumo:
Motivated by a suggestion in our earlier work [G. Baskaran, Phys. Rev. B 65, 212505 (2002)], we study electron correlation driven superconductivity in doped graphene where on-site correlations are believed to be of intermediate strength. Using an extensive variational Monte Carlo study of the repulsive Hubbard model and a correlated ground state wave function, we show that doped graphene supports a superconducting ground state with a d+id pairing symmetry. We estimate superconductivity reaching room temperatures at an optimal doping of about 15%-20%. Our work suggests that correlations can stabilize superconductivity even in systems with intermediate coupling.
Resumo:
We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.
Resumo:
We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. Due to the constraint between the pull force, peel angle and the peel force, the equations of motion derived earlier fall into the category of differential-algebraic equations (DAE) requiring an appropriate algorithm for its numerical solution. By including the kinetic energy arising from the stretched part of the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics itself, thus circumventing the need to use any special algorithm. In the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for the earlier singular equations. We find that mass has a strong influence on the dynamics of the model rendering periodic solutions to chaotic and vice versa. Apart from the rich dynamics, the model reproduces several qualitative features of the different waveforms of the peel force function as also the decreasing nature of force drop magnitudes.
Resumo:
The superconducting (or cryogenic) gravimeter (SG) is based on the levitation of a superconducting sphere in a stable magnetic field created by current in superconducting coils. Depending on frequency, it is capable of detecting gravity variations as small as 10-11ms-2. For a single event, the detection threshold is higher, conservatively about 10-9 ms-2. Due to its high sensitivity and low drift rate, the SG is eminently suitable for the study of geodynamical phenomena through their gravity signatures. I present investigations of Earth dynamics with the superconducting gravimeter GWR T020 at Metsähovi from 1994 to 2005. The history and key technical details of the installation are given. The data processing methods and the development of the local tidal model at Metsähovi are presented. The T020 is a part of the worldwide GGP (Global Geodynamics Project) network, which consist of 20 working station. The data of the T020 and of other participating SGs are available to the scientific community. The SG T020 have used as a long-period seismometer to study microseismicity and the Earth s free oscillation. The annual variation, spectral distribution, amplitude and the sources of microseism at Metsähovi were presented. Free oscillations excited by three large earthquakes were analyzed: the spectra, attenuation and rotational splitting of the modes. The lowest modes of all different oscillation types are studied, i.e. the radial mode 0S0, the "football mode" 0S2, and the toroidal mode 0T2. The very low level (0.01 nms-1) incessant excitation of the Earth s free oscillation was detected with the T020. The recovery of global and regional variations in gravity with the SG requires the modelling of local gravity effects. The most important of them is hydrology. The variation in the groundwater level at Metsähovi as measured in a borehole in the fractured bedrock correlates significantly (0.79) with gravity. The influence of local precipitation, soil moisture and snow cover are detectable in the gravity record. The gravity effect of the variation in atmospheric mass and that of the non-tidal loading by the Baltic Sea were investigated together, as sea level and air pressure are correlated. Using Green s functions it was calculated that a 1 metre uniform layer of water in the Baltic Sea increases the gravity at Metsähovi by 31 nms-2 and the vertical deformation is -11 mm. The regression coefficient for sea level is 27 nms-2m-1, which is 87% of the uniform model. These studies are associated with temporal height variations using the GPS data of Metsähovi permanent station. Results of long time series at Metsähovi demonstrated high quality of data and correctly carried out offsets and drift corrections. The superconducting gravimeter T020 has been proved to be an eminent and versatile tool in studies of the Earth dynamics.
Resumo:
We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82 measured from 3 K to 300 K in the spectral range from 60 to 1800 cm(-1) and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm-1 exhibits a sharp increase by similar to 5% in the frequency below a temperature T-s (similar to 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm-1 and 1600 cm-1, attributed to electronic Raman scattering from (x(2)-y(2)) to xz/yz d-orbitals of Fe. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the (Bi,Pb)-Sr-Cu-O system we have examined many compositions which are either metallic or semiconducting. In the Bi2-xPbx(Ca, Sr)n+1 Cun O2n+4+δ system, we have established the superconducting properties of the n = 1 to 4 members. The Tc increases from n = 1 to 3 and does not increase further when n = 4. In Bi2Ca1-x,YxSr2Cu2Oy, the Tc decreases with increase in x.
Resumo:
We report x-ray photoelectron spectroscopic investigation of RuSr2Eu1.5Ce0.5Cu2O10 with ferromagnetic T-C similar to 100 K and a superconducting transition temperature of similar to 30 K compared with RuSr2EuCeCu2O10, which is a ferromagnetic (T-C similar to 150 K) insulator. Our results show that the rare earths, Eu and Ce, are in 3+ and 4+ states, respectively. Comparing the Ru core level spectra from these compounds to those from two Ru reference oxides, we also show that Ru in these ruthenocuprates is always in 5+ state, suggesting that the doped holes in the superconducting compound arising from the substitution of Ce4+ by Eu3+ are primarily in the Cu-O plane, in close analogy to all other doped high-T-C cuprates. Analysis of Cu 2p spectra in terms of a configuration interaction model provides a quantitative description of the gross electronic structures of these ruthenocuprates.