945 resultados para Sulfur dioxide.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A system for disposal and recovery of the main effluents and chemical waist from isotope separation plants and enriched compounds-15N and 34S production has been carried out at the Stable Isotope Laboratory (LIE) of the CENA/USP. Around four hundred thousand liters of effluents has been recovered yearly. Among the recovered chemical wastes, the more relevant are: ammonia; brome; ammonium and sodium sulfate; sodium hydroxide; sulfur dioxide; and hydrochloric acid. Chemical wastes containg recoverable heavy metals (Ag, Cr and Cu) and solvents (methanol, ethanol and acetone) are processed and recovered. Gaseous emissions, mainly H2S are used for recovery of heavy metals solutions. The minimization of the residues waters, as well the reduction of electric energy consume was established using a water deionization system. A cost/effect balance of the process is reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermogravimetry was applied to investigate the effects of temperature and atmosphere on conversion of sulfur dioxide (SO2) absorbed by limestone. Ranges of temperature and particle size were studied, typical of fluidized-bed coal combustion. Isothermal experiments were performed at different temperatures (between 750 and 950 ºC) under local atmospheric pressure (~ 697 mmHg) in dynamic atmospheres of air and nitrogen. The maximum conversion was 29% higher in nitrogen atmosphere than in air atmosphere. The optimum conversion temperature was found at 831 ºC in air atmosphere and at 894 ºC in nitrogen atmosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfur emission in coal power generation is a matter of great environmental concern and limestone sorbents are widely used for reducing such emissions. Thermogravimetry was applied to determine the effects of the type of limestone (calcite and dolomite), particle size (530 and 650 µm) and atmosphere (air and nitrogen) on the kinetics of SO2 sorption by limestone. Isothermal experiments were performed for different temperatures (650 to 950 ºC), at local atmospheric pressure. The apparent activation energies, as indicated by the slope of the Arrhenius plot, resulted between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is presently much interest in the clean and efficient generation of energy by proton exchange membrane fuel cells (PEMFC), using hydrogen as fuel. The generation of hydrogen by the reforming of other fuels, anaerobic fermentation of residual waters and other methods, often produce contaminants that affect the performance of the cell. In this work, the effect of gaseous SO2 and NO2 on the performance of a H2/O2 single PEMFC is studied. The results show that SO2 decreases irreversibly the performance of the cell under operating conditions, while NO2 has a milder effect that allows the recovery of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work one proposes a didactic experience to simulate atmospheric corrosion of copper and nickel, due to sulfur dioxide presence. This is an opportunity to understand some basic aspects of atmospheric corrosion, by using fundamental concepts in chemistry, reactions of extraction and characterization of pollutants, as well as their participation in corrosion process. This subject opens a space for discussion about necessity of pollutant gases emissions control for preservation of materials and the environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally limestone has been used for the flue gas desulfurization in fluidized bed combustion. Recently, several studies have been carried out to examine the use of limestone in applications which enable the removal of carbon dioxide from the combustion gases, such as calcium looping technology and oxy-fuel combustion. In these processes interlinked limestone reactions occur but the reaction mechanisms and kinetics are not yet fully understood. To examine these phenomena, analytical and numerical models have been created. In this work, the limestone reactions were studied with aid of one-dimensional numerical particle model. The model describes a single limestone particle in the process as a function of time, the progress of the reactions and the mass and energy transfer in the particle. The model-based results were compared with experimental laboratory scale BFB results. It was observed that by increasing the temperature from 850 °C to 950 °C the calcination was enhanced but the sulfate conversion was no more improved. A higher sulfur dioxide concentration accelerated the sulfation reaction and based on the modeling, the sulfation is first order with respect to SO2. The reaction order of O2 seems to become zero at high oxygen concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Harmful sulfur dioxide (SO2) emissions from power plants have increasingly been restricted since the 1970’s. Circulating fluidized bed (CFB) scrubber is a dry flue gas desulfurization method of absorbing SO2 out of the flue gas with sorbent. In current commercial plants, the used sorbent is commercial or on-site hydrated calcium hydroxide. The CFB scrubber process is characterized by a close but adequate approach to the flue gas saturation temperature that is achieved by spraying water to the absorber followed by a particulate control device. Very high SO2 removal is achieved along with a dry byproduct that is continuously recirculated back to the absorber for enhanced sorbent utilization. The aim of this work is to develop a method that would characterize the reactivity of sorbents used in CFB scrubbers and to conclude how different process parameters and sorbent properties affect the sulfur absorption. The developed characterization method is based on a fixed bed of sorbent and inert silica sand, through which an SO2 containing gas mixture is led. The reaction occurs in the bed and the SO2 concentration in the outlet as a function of time, a breakthrough curve, is obtained from the analyzer. Reactivity of the sorbents are evaluated by the absorbed sulfur amount. Results suggest that out of process parameters, lower SO2 concentration, lower temperature and higher moisture content enhance the desulfurization. Between different sorbents, specific surface area seems to be the most significant parameter. Large surface area linearly leads to more efficient desulfurization. Overall, the solid conversion levels in the tests were very low creating uncertainty to the validity of the results. New desing is being planned to overcome the problems of the device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report examines the human impact on the subarctic environment of the joint border area of Norway, Finland and Russia. The aim is to present the current state and recent changes that have taken place in the region. The main threat to the environment is the Pechenganikel mining and metallurgical industrial combine in the towns of Nikel and Zapolyarny in the Kola Peninsula. Emissions from this complex include high levels of heavy metals, persistent organic pollutants and sulfur dioxide. Pollution, along with climate change, water level regulation and other anthropogenic effects, has affected the aquatic ecosystems in the joint border area. The main heavy metals in the area are copper and nickel, the highest concentrations of which are measured near the combine. Direct discharge of sewage into the river continues and airborne heavy metal particles are also deposited to areas farther away. Climate changeinduced increase in temperature and precipitation in the Kola Peninsula is evident. Water level regulation with seven hydropower plants in the Pasvik River have changed it into a series of lakes and lake-like reservoirs. This report discusses modelling, which was enabled to estimate the effect of climate change on Lake Inarijärvi and the Pasvik River hydrology, water level fluctuation and ecology and to follow the sulfur dioxide emissions emitted from the Pechenganikel. Effects of pollution on the nature and concentrations of the main pollutants were studied and climate change in the border area and its effects on the ecology were estimated. Also the effects of water level regulation on the ecological status of the aquatic ecosystems were addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study was to estimate the contribution of environmental pollutants to hospital admissions for cardiovascular disease. A time series ecological study was conducted on subjects aged over 60 years and living in São José dos Campos, Brazil, with a population near 700,000 inhabitants. Hospital admission data of public health patients (SUS) were obtained from DATASUS for the period between January 1, 2004 and December 31, 2006, according to the ICD-10 diagnoses I20 to I22 and I24. Particulate matter with less than 10 µm in aerodynamic diameter, sulfur dioxide and ozone were the pollutants examined, and the control variables were mean temperature and relative humidity. Data on pollutants were obtained from the São Paulo State Sanitary Agency. The generalized linear model Poisson regression with lags of up to 5 days was used. There were 1303 hospital admissions during the period. Exposure to particulate matter was significantly associated with hospitalization for cardiovascular disease 3 days after exposure (RR = 1.006; 95%CI = 1.000 to 1.010) and an increase of 16 µg/m³ was associated with a 10% increase in risk of hospitalization; other pollutants were not associated with hospitalization. Thus, it was possible to identify the role of exposure to particulate matter as an environmental pollutant in hospitalization for cardiovascular disease in a medium-sized city inSoutheastern Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Yacon is considered a functional food due to its the fructooligosaccharide (FOS) content, however its perishability and low production volume is a problem. The aim of this study was to analyze the changes in aging during one year of storage and conduct sensory analysis of fermented of yacon. For one year total acidity, volatile acidity, free and total sulfur dioxide, reducing sugars, sucrose, phenols and FOS and its antioxidant power were studied. At the end of aging a sensory profile and acceptance panel was performed. The total and volatile acidity increased significantly (p < 0.05). A decrease in fructooligosaccharide was also observed, indicating that yeasts are probably capable of hydrolyzing the latter. The total sulfur dioxide decreased significantly, demonstrating its ability to act well against oxidation products. This product showed good antioxidant capacity and sensory profiles of considerable acceptance. Therefore it can be affirmed that the alcoholic fermentation of yacon can be a good alternative for the industrial sector and farmers in the region could be encouraged to use large-scale production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’exposition quotidienne aux polluants atmosphériques tels que le dioxyde de soufre, les particules fines (PM2.5) et l’ozone en milieu urbain sont associés à des effets néfastes sur la santé respiratoire des enfants. Des études épidémiologiques transversales rapportent des associations entre la pollution atmosphérique et des problèmes de santé respiratoires chez les enfants en milieu industriel telles que la prévalence de l’asthme et de l'hyperréactivité bronchique. Ces études épidémiologiques transversales ne permettent pas d’évaluer les effets sur la santé d’une exposition de courte durée. Peu d’études ont évalué les effets respiratoires des expositions aiguës chez les enfants à la pollution atmosphérique d’émissions industrielles. Dans ce mémoire, nous avons analysé l’association entre l’exposition journalière aux émissions d’une aluminerie et l’hospitalisation pour problèmes respiratoires (asthme, bronchiolite) chez les enfants de Shawinigan. Pour étudier ces effets des expositions aiguës, nous avons utilisé le devis épidémiologique de type « case-crossover » qui compare l’exposition lors des jours « cas » (jour d’hospitalisation) avec l’exposition lors des jours « contrôle » (exposition du même individu, les mêmes jours de la semaine, durant le même mois). Les variables d’exposition suivantes ont été calculées pour les enfants vivants dans un rayon de 7.5 km de l’industrie et pour ceux habitant à moins de 2.5 km de la station de mesure de polluants près de l’industrie : i) le nombre d’heures par jour durant lesquelles la résidence de chaque enfant recevait le panache de fumée de l’industrie. ii) les concentrations journalières de PM2.5 et de SO2 (moyenne et maximales) de la station de mesure des polluants localisée près de l’industrie. Des régressions logistiques conditionnelles ont été utilisées pour estimer les rapports de cotes (OR) et leurs intervalles de confiance à 95% (IC95%). Au total, 429 hospitalisations d’enfants pour asthme et bronchiolite ont été recensées pendant la période d’étude allant de 1999 à 2008. Le risque d’hospitalisations pour asthme et bronchiolite a augmenté avec l’augmentation du nombre d’heures d’exposition aux fumées de l’industrie, chez les enfants de moins de 5 ans. Pour les enfants de 2-4 ans, cette association était : OR : 1.27, pour un interquartile de 4.8 heures/jour; intervalle de confiance à 95%: 1.03-1.56. Des tendances moins prononcées sont notées avec les niveaux de SO2 et de PM2.5. Cette étude suggère que l’exposition journalière aux émissions industrielles identifiées par l’exposition horaire des vents venant de l’usine pourrait être associée à une exacerbation des problèmes respiratoires chez les jeunes enfants. De plus, l’effet plus prononcé avec la variable d’exposition basée sur les vents suggère un effet découlant des polluants autres que ceux mesurés (SO2 et PM2.5), possiblement comme les hydrocarbures aromatiques polycycliques (HAP).