945 resultados para Subventricular Zone


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les patients atteints de cancers reçoivent différents traitement, tels que la radiothérapie ou la chimiothérapie. Actuellement, environ 60% des enfants survivants du cancer développent des effets secondaires cognitifs, consécutifs aux traitements énoncés précédemment. Compte tenu de la perspective du développement psychomoteur de l’enfant et de l’immaturité du système nerveux central (SNC) chez ces patients, il s’avère particulièrement pertinent d’étudier les effets secondaires que provoquent les traitements anticancéreux sur le développement cognitif de cette population de malades. Des études ont démontrées l’existence de liens étroits entre ces effets secondaires et l’abolition de la neurogénèse provoquée principalement par l’irradiation. Ce projet de maîtrise porte sur les effets du facteur de croissance épidermique, l’EGF (un facteur de croissance impliqué dans la prolifération cellulaire) sur la neurogénèse de la souris. Nous avons également cherché un vecteur de sécrétion efficace pour permettre une diffusion continue d’EGF à long terme (2 à 4 semaines). Notre hypothèse est que l’EGF serait capable de stimuler la neurogénèse et protéger les cellules de l’apoptose dans le cerveau de la souris, suite à une irradiation. Nous avons montré un effet positif de l’EGF sur la formation et la prolifération des neuroblastes Dcx(+) dans la zone sous ventriculaire (ZSV) et non dans l’hippocampe (Hi), suite à l’injection de l’EGF, directement dans le cerveau à l’aide d’une pompe osmotique. Nous avons observé que cette augmentation de la quantité de jeunes neurones est indépendante de la capacité de l’EGF à les protéger de l’apoptose. L’EGF ne protège pas non plus les blastes leucémiques, issus de lignées de cellules humaines, des effets secondaires d’une irradiation. Les cellules souches mésenchymateuses (CSM) modifiées génétiquement et générées pour sécréter l’EGF ne montrent aucun effet sur la stimulation de la neurogénèse quand elles sont directement injectées dans le cerveau. Finalement, nos résultats indiquent que l’EGF pourrait être un bon candidat pour le développement de nouvelles thérapies pour traiter les effets secondaires que provoque une irradiation du cerveau. L’utilisation de pompes pour permettre l’administration d’EGF dans le cerveau devient alors très intéressante pour améliorer la qualité de vie des patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the challenges in stem cell research is to avoid transformation during cultivation. We studied high passage subventricular zone derived neural stem cells (NSCs) cultures of adult rats in the absence of growth factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). We termed this culture exogenous growth factor independent neural stem cells (GiNSCs). GiNSCs expressed stemness markers, displayed a high constitutive NF-kappaB activity and an increased, aberrant, polyploid DNA content. GiNSCs showed a tumorigenic phenotype and formed colonies in a soft agar assay. Microarray analysis showed the up-regulation of the NF-kappaB target gene vascular endothelial growth factor (VEGF). In contrast, proneuronal genes were down-regulated. Under neuronal differentiation conditions GiNSCs adopted a glioma-like phenotype, with nuclear p53, preserving high amounts of Nestin positive cells and prolonged proliferation. Neutralization of VEGF strongly inhibited proliferation and induced differentiation. In a gain of function approach, the transfection of NSCs with constitutively active upstream kinase IKK-2 led to constitutively activated NF-kappaB, proliferation in absence of growth factors and augmented VEGF secretion. In a rescue experiment a reduction of NF-kappaB activity by overexpression of IkappaB-AA1 was able to shift the morphology toward an elongated cell form, increased cell death, and decreased proliferation. Thus GiNSCs may provide a potent tool in cancer research, as their exogenous cytokine independent proliferation and their constitutively high NF-kappaB expression presumes cancerous properties observed in gliomas. In addition, this study might add a novel mechanism for detecting oncogenic transformation in therapeutic stem cell cultures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adult mammalian brain contains self-renewable, multipotent neural stem cells (NSCs) that are responsible for neurogenesis and plasticity in specific regions of the adult brain. Extracellular matrix, vasculature, glial cells, and other neurons are components of the niche where NSCs are located. This surrounding environment is the source of extrinsic signals that instruct NSCs to either self-renew or differentiate. Additionally, factors such as the intracellular epigenetics state and retrotransposition events can influence the decision of NSC`s fate into neurons or glia. Extrinsic and intrinsic factors form an intricate signaling network, which is not completely understood. These factors altogether reflect a few of the key players characterized so far in the new field of NSC research and are covered in this review. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 107-114 DOI:10.1002/wsbm:100

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery of neurogenesis in adult brains opened the possibility of cellular therapy strategies for the treatment of neurodegenerative diseases, such as Alzheimer’s disease. Neurogenesis in the adult brain occurs in two areas: subgranular zone of the hippocampus and subventricular zone (SVZ) of the lateral ventricles. Neurons that originate from the SVZ migrate to the olfactory bulb (OB) through the rostral migratory stream (RMS). In Alzheimer’s disease, there is a progressive neuronal dysfunction and degeneration, resulting in brain atrophy and cognitive impairments including olfactory dysfunction. Several studies have demonstrated that pharmacological treatment with lithium exerts positive effects on adult neurogenesis, and one pathway seems to be the modulation of factors that regulate the migration of neuroblasts. The objective of this study was to investigate whether treatment with lithium promotes the increase of migratory neuroblasts using as parameter the RMS. Adult male C57BL/6 mice were divided into control and lithium-treated groups. The animals were treated for 6 weeks and, at four different time points, i.e., 10 days, 7 days, 3 days and 1 day before the end of treatments, they received an injection of BrdU (cell proliferation marker). The animals were sacrificed by perfusion fixation and the brains were immunohistochemically labeled for BrdU for analysis of migrating neuroblasts in the RMS. The results showed that the number of BrdU+ cells in the RMS was not significantly different between the two groups, suggesting that lithium, alone, is not capable of increasing the number of neuroblasts migrating from the SVZ to the OB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurale Stammzellen sind im adulten Säugerhirn in der Subventrikulären Zone (SVZ) der Lateralventrikel und dem Hippokampus lokalisiert. In der SVZ entstandene neurale Zellen migrieren entlang eines von Astrozyten umgebenen Pfades, dem Rostralmigratorischen Strom (RMS), zum Olfaktorischen Bulbus (OB), wo sie zu olfaktorischen Interneuronen differenzieren. Vaskuläre Wachstumsfaktoren, wie VEGF-A beeinflussen die adulte Neurogenese. Die vorliegende Arbeit beschreibt erstmalig detailliert die spezifische Expression des VEGF-Rezeptor-1 (VEGFR-1) in den Regionen olfaktorischer und hippokampaler Neurogenese des adulten ZNS. Die Ergebnisse zeigen, dass VEGFR-1 im adulten Hirn hauptsächlich in GFAP-positiven Zellen in der SVZ, dem RMS, dem OB, dem Corpus callosum und dem Hippokampus exprimiert ist. In vivo-Analysen transgener Mäuse (Flt-1TK-/-), denen die Signaltransduktionsdomäne des VEGFR-1 fehlt, demonstrieren hier erstmals eine Rolle des VEGFR-1 in adulter Neurogenese. Flt-1TK-/- weisen eine erhöhte Proliferation neuronaler Vorläuferzellen der SVZ auf. Im RMS ist jedoch 6 Tage nach BrdU-Administration die Anzahl markierter Zellen im Vergleich zum Wildtyp (wt) um 47,97% reduziert, ohne dass es zu einer Akkumulation in der SVZ kommt. Zusammen mit der in Kulturversuchen stark erhöhten Migrationsgeschwindigkeit von Neuroblasten der Flt-1TK-/- und einer verminderten Abwanderung von Zellen aus dem RMS ins Corpus callosum der Flt-1Tk-/-, weist dies auf eine gesteigerte Migration zum OB hin. Tatsächlich war der OB der Flt-1TK-/-, vor allem die Plexiform- und Periglomerulärzellschicht (PGL), signifikant vergrößert. Im OB der transgenen Tiere migrieren zudem signifikant mehr BrdU-markierte Zellen in die PGL. Dort differenzieren signifikant mehr Neurone als im wt. Subtypisierungen zeigen, zudem eine erhöhte Differenzierung in dopaminerge Interneurone in der PGL der Flt-1TK-/-. Im Gehirn Flt-1TK-/- war die Konzentration von VEGF-A erhöht. Intrazerebroventrikuläre Infusion von VEGF-A in wt-Tiere erbrachte den eindeutigen Nachweis, dass die Erhöhung der VEGF-A-Konzentration im Gehirn der Flt-1TK-/- ursächlich für die in diesen Tieren beobachtete Reduktion der BrdU-positiven Zellen im RMS ist. Dies ist gleichzeitig der erste Nachweis einer Wirkung von VEGF-A auf Neuroblasten im RMS in vivo unter physiologischen Bedingungen. Die erhöhte VEGF-A-Konzentration könnte auch den anderen hier dargelegten Effekten zugrunde liegen. VEGFR-1 ist somit ein regulatorischer Faktor für die adulte olfaktorische Neurogenese und spielt eine potentielle Rolle in der Differenzierung dopaminerger Interneurone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seladin-1 (SELective Alzheimer's Disease INdicator-1) is an anti-apoptotic gene, which is down-regulated in brain regions affected by Alzheimer's disease (AD). In addition, seladin-1 catalyzes the conversion of desmosterol into cholesterol. Disruption of cholesterol homeostasis in neurons may increase cell susceptibility to toxic agents. Because the hippocampus and the subventricular zone, which are affected in AD, are the unique regions containing stem cells with neurogenic potential in the adult brain, it might be hypothesized that this multipotent cell compartment is the predominant source of seladin-1 in normal brain. In the present study, we isolated and characterized human mesenchymal stem cells (hMSC) as a model of cells with the ability to differentiate into neurons. hMSC were then differentiated toward a neuronal phenotype (hMSC-n). These cells were thoroughly characterized and proved to be neurons, as assessed by molecular and electrophysiological evaluation. Seladin-1 expression was determined and found to be significantly reduced in hMSC-n compared to undifferentiated cells. Accordingly, the total content of cholesterol was decreased after differentiation. These original results demonstrate for the first time that seladin-1 is abundantly expressed by stem cells and appear to suggest that reduced expression in AD might be due to an altered pool of multipotent cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurogenesis in the adult mouse brain occurs within the subventricular zone (SVZ) of the lateral ventricle. In the SVZ, neural stem cells (NSC) reside in a specialized microenvironment, or vascular niche, consisting of blood vessels and their basement membranes. Most NSCs in the SVZ differentiate into progenitor cells, which further differentiate to generate neuroblasts, which then migrate from the SVZ to the olfactory bulbs (OB) along the rostral migratory stream (RMS). ECM-mediated adhesion and signaling within the vascular niche likely contribute to proper NSC self-renewal, survival, differentiation and neuroblast motility. The mechanisms that control these events are poorly understood. Previous studies from our group and others have shown that loss of the ECM receptor, αvβ8 integrin, in NSCs in the embryonic mouse brain leads to severe developmental vascular defects and premature death. Here, the functions of αvβ8 integrin in the adult brain have been examined using mice that have been genetically manipulated to lack a functional β8 integrin gene. This study reveals that loss of β8 integrin leads to widespread defects in homeostasis of the neurovascular unit, including increased intracerebral blood vessels with enhanced perivascular astrogliosis. Additionally, β8 integrin dependent defects in NSC proliferation, survival, and differentiation, as well as neuroblast migration in the RMS were observed both in vivo and in vitro. The defects correlated, in part, with diminished integrin-mediated activation of TGFβ, an ECM ligand of β8 integrin. Collectively, these data identify important adhesion and signaling functions for β8 integrin in the regulation of neural stem and progenitor cells in the SVZ as well as in neuroblast migration along the RMS in the adult brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although many areas of the brain lose their regenerative capacity with age, stem cell niches have been identified in both the subventricular zone (SVZ) along the lateral walls of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus (Gage, 2000; Alvarez-Buylla et al., 2001; Alvarez-Buylla and Lim, 2004). The SVZ niche utilizes many mechanisms to determine the migration patterns of neuroblasts along the RMS into the olfactory bulb, one being Eph/ephrin signaling (Conover et al., 2000; Holmberg et al., 2005). EphA4-mediated signaling is necessary for axon guidance during development, and its continued expression in the SVZ niche suggests a regulatory role throughout adulthood. Previous studies have suggested that EphA4 plays a role in the regulation of astrocytic gliosis and glial scar formation, which inhibits axonal regeneration in these areas following spinal cord injury (Goldshmit et al., 2004). Blood vessels may also play an important role in SVZ cell proliferation and neuroblast migration following injury (Tavazoie et al., 2008; Yamashita et al., 2006). The goal of this project is to examine glial scar formation as well as the relationship between SVZ vasculature, neuroblasts, and neural stem cells in EphA4 +/+, EphA4 +/-, and EphA4 -/- mice following a needle stick injury in the cortex or striatum. The outcome of these experiments will determine whether invasive procedures such as injections will affect neuroblast migration and/or the organization of the SVZ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells in the brains of adult mammals continue to proliferate in the subventricular zone (SVZ) throughout the lateral wall of the lateral ventricle. Here we show, using whole mount dissections of this wall from adult mice, that the SVZ is organized as an extensive network of chains of neuronal precursors. These chains are immunopositive to the polysialylated form of NCAM, a molecule present at sites of plasticity, and TuJ1, an early neuronal marker. The majority of the chains are oriented along the rostrocaudal axis and many join the rostral migratory stream that terminates in the olfactory bulb. Using focal microinjections of DiI and transplantation of SVZ cells carrying a neuron-specific reporter gene, we demonstrate that cells originating at different rostrocaudal levels of the SVZ migrate rostrally and reach the olfactory bulb where they differentiate into neurons. Our results reveal an extensive network of pathways for the tangential chain migration of neuronal precursors throughout the lateral wall of the lateral ventricle in the adult mammalian brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In adult rodents, neurons are continually generated in the subventricular zone of the forebrain, from where they migrate tangentially toward the olfactory bulb, the only known target for these neuronal precursors. Within the main olfactory bulb, they ascend radially into the granule and periglomerular cell layers, where they differentiate mainly into local interneurons. The functional consequences of this permanent generation and integration of new neurons into existing circuits are unknown. To address this question, we used neural cell adhesion molecule-deficient mice that have documented deficits in the migration of olfactory-bulb neuron precursors, leading to about 40% size reduction of this structure. Our anatomical study reveals that this reduction is restricted to the granule cell layer, a structure that contains exclusively γ-aminobutyric acid (GABA)ergic interneurons. Furthermore, mutant mice were subjected to experiments designed to examine the behavioral consequences of such anatomical alteration. We found that the specific reduction in the newly generated interneuron population resulted in an impairment of discrimination between odors. In contrast, both the detection thresholds for odors and short-term olfactory memory were unaltered, demonstrating that a critical number of bulbar granule cells is crucial only for odor discrimination but not for general olfactory functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spinal cord neuronal restricted progenitor (NRP) cells, when transplanted into the neonatal anterior forebrain subventricular zone, migrate to distinct regions throughout the forebrain including the olfactory bulb, frontal cortex, and occipital cortex but not to the hippocampus. Their migration pattern and differentiation potential is distinct from anterior forebrain subventricular zone NRPs. Irrespective of their final destination, NRP cells do not differentiate into glia. Rather they synthesize neurotransmitters, acquire region-specific phenotypes, and receive synapses from host neurons after transplantation. Spinal cord NRPs express choline acetyl transferase even in regions where host neurons do not express this marker. The restricted distribution of transplanted spinal cord NRP cells and their acquisition of varied region-specific phenotypes suggest that their ultimate fate and phenotype is dictated by a combination of intrinsic properties and extrinsic cues from the host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precursor cells found in the subventricular zone (SVZ) of the adult brain can undergo cell division and migrate long distances before differentiating into mature neurons. We have investigated the possibility of introducing genes stably into this population of cells. Replication-defective adenoviruses were injected into the SVZ of the lateral ventricle of adult mice. The adenoviruses carried a cDNA for the LacZ reporter or the human p75 neurotrophin receptor, for which species-specific antibodies are available. Injection of the viruses into the SVZ led to efficient labeling of neuronal precursors. Two months after viral injection, infected cells were detected in the olfactory bulb, a significant distance from the site of injection. Labeled periglomerular and granular neurons with extensive dendritic arborization were found in the olfactory bulb. These results demonstrate that foreign genes can be efficiently introduced into neuronal precursor cells. Furthermore, adenovirus-directed infection can lead to long-term stable gene expression in progenitor cells found in the adult central nervous system.