956 resultados para Subtropical Gyre


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structure and climate of the east North Atlantic are appraised within a framework of in situ measurement and altimeter remote sensing from 0 degree - 60 degree N. Long zonal expendable bathythermograph /conductivity-temperature-depth probe sections show repeating internal structure in the North Atlantic Ocean. Drogued buoys and subsurface floats give westward speeds for eddies and wavelike structure. Records from longterm current meter deployments give the periodicity of the repeating structure. Eddy and wave characteristics of period, size or wavelength, westward propagation speed, and mean currents are derived at 20 degree N, 26 degree N, 32.5 degree N, 36 degree N and 48 degree N from in situ measurements in the Atlantic Ocean. It is shown that ocean wave and eddy-like features measured in situ correlate with altimeter structure. Interior ocean wave crests or cold dome-like temperature structures are cyclonic and have negative surface altimeter anomalies; mesoscale internal wave troughs or warm structures are anticyclonic and have positive surface height anomalies. Along the Eastern Boundary, flows and temperature climate are examined in terms of sla and North Atlantic Oscillation (NAO) Index. Longterm changes in ocean climate and circulation are derived from sla data. It is shown that longterm changes from 1992 to 2002 in the North Atlantic Current and the Subtropical Gyre transport determined from sla data correlate with winter NAO Index such that maximum flow conditions occurred in 1995 and 2000. Minimum circulation conditions occurred between 1996-1998. Years of extreme negative winter NAO Index result in enhanced poleward flow along the Eastern Boundary and anomalous winter warming along the West European Continental Slope as was measured in 1990, 1996, 1998 and 2001.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During summer 2008 and spring 2009, surface oceanographic surveys were carried out around three islands of the Azores archipelago (Terceira, Sao Miguel and Santa Maria) to assess the phytoplankton distribution and associated physico-chemical processes. The Azores archipelago is a major feature in the biogeochemical North Atlantic Subtropical Gyre (NAST) province although its influence on the productivity of the surrounding ocean is poorly known. Surface phytoplankton was studied by microscopy and HPLC (High Precision Liquid Chromatography). The mean values for biomass proxy Chlorophyll a (Chla) ranged from 0.04 to 0.55 mu g L-1 (Chla maximum = 0.86 mu g L-1) and coccolithophores were the most abundant group, followed by small flagellates, Cyanobacteria, diatoms and dinoflagellates being the least abundant group. The distribution of phytoplankton and coccolithophore species in particular presented seasonal differences and was consistent with the nearshore influence of warm subtropical waters from the south Azores current and colder subpolar waters from the north. The satellite-derived circulation patterns showed southward cold water intrusions off Terceira and northward warm water intrusions off Santa Maria. The warmer waters signal was confirmed by the subtropical coccolithophore assemblage, being Discosphaera tubifera a constant presence under these conditions. The regions of enhanced biomass, either resulting from northern cooler waters or from island induced processes, were characterized by the presence of Emiliania huxleyi. Diatoms and dinoflagellates indicated coastal and regional processes of nutrient enrichment and areas of physical stability, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere) database (https://halocat.geomar.de/). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1 degrees x 1 degrees grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr(-1) for CHBr3, 0.78/0.98 Gmol Br yr(-1) for CH2Br2 and 1.24/1.45 Gmol Br yr(-1) for CH3I (robust fit/ordinary least squares regression techniques). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our flux calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An under-representation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom-up emission estimate and top-down approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fast Repetition Rate fluorometry (FRRf) measurements of phytoplankton photophysiology from an across-basin South Atlantic cruise (as part of the GEOTRACES programme) characterised two dominant ecophysiological regimes which were interpreted on the basis of nutrient limitation. South of the South Subtropical Convergence (SSTC) in the northern sub-Antarctic sector of the Antarctic Circumpolar Current (ACC) in the Eastern Atlantic Basin, waters are characterised by elevated chlorophyll concentrations, a dominance by larger phytoplankton cells, and low apparent photochemical efficiency (F-v/F-m). Shipboard 24 h iron (Fe) addition incubation experiments confirmed that Fe stress was primarily responsible for the low F-v/F-m, with Fe addition to these waters, either within the artificial bottle additions or naturally occurring downstream enrichment from Gough Island, significantly increasing F-v/F-m values. To the north of the SSTC at the southern boundary of the South Atlantic Gyre, phytoplankton are characterised by high values of F-v/F-m which, coupled with the low macronutrient concentrations and increased presence of picocyanobacteria, are interpreted as conditions of Fe replete, balanced macronutrient-limited growth. Spatial correlation was found between F-v/F-m and Fe: nitrate ratios, supporting the suggestion that the relative supply ratios of these two nutrients can control patterns of limitation and consequently the ecophysiology of phytoplankton in subtropical gyre and ACC regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the watermasses present. Surface Zn concentrations are among the lowest reported for theworld’s oceans (<50 pM). A strong Zn-Si linear relationshipwas observed (Zn (nM)= 0.065 Si (μM), r2=0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the first remotely operated vehicle investigation of megabenthic communities (1004-1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3-14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40-56%). Two peaks in species richness occurred, the first at 1300-1400 m where cooler Wyville Thomson Overflow Water (WTOW) mixes with subtropical gyre waters and the second at 1500-1600 m where WTOW mixes with subpolar mode waters. Our results suggest that internal tides, substrate heterogeneity and oceanographic interfaces may enhance biological diversity on this and adjacent seamounts in the Rockall Trough.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is ongoing debate as to whether the oligotrophic ocean is predominantly net autotrophic and acts as a CO2 sink, or net heterotrophic and therefore acts as a CO2 source to the atmosphere. This quantification is challenging, both spatially and temporally, due to the sparseness of measurements. There has been a concerted effort to derive accurate estimates of phytoplankton photosynthesis and primary production from satellite data to fill these gaps; however there have been few satellite estimates of net community production (NCP). In this paper, we compare a number of empirical approaches to estimate NCP from satellite data with in vitro measurements of changes in dissolved O2 concentration at 295 stations in the N and S Atlantic Ocean (including the Antarctic), Greenland and Mediterranean Seas. Algorithms based on power laws between NCP and particulate organic carbon production (POC) derived from 14C uptake tend to overestimate NCP at negative values and underestimate at positive values. An algorithm that includes sea surface temperature (SST) in the power function of NCP and 14C POC has the lowest bias and root-mean square error compared with in vitro measured NCP and is the most accurate algorithm for the Atlantic Ocean. Nearly a 13 year time series of NCP was generated using this algorithm with SeaWiFS data to assess changes over time in different regions and in relation to climate variability. The North Atlantic subtropical and tropical Gyres (NATL) were predominantly net autotrophic from 1998 to 2010 except for boreal autumn/winter, suggesting that the northern hemisphere has remained a net sink for CO2 during this period. The South Atlantic subtropical Gyre (SATL) fluctuated from being net autotrophic in austral spring-summer, to net heterotrophic in austral autumn–winter. Recent decadal trends suggest that the SATL is becoming more of a CO2 source. Over the Atlantic basin, the percentage of satellite pixels with negative NCP was 27%, with the largest contributions from the NATL and SATL during boreal and austral autumn–winter, respectively. Variations in NCP in the northern and southern hemispheres were correlated with climate indices. Negative correlations between NCP and the multivariate ENSO index (MEI) occurred in the SATL, which explained up to 60% of the variability in NCP. Similarly there was a negative correlation between NCP and the North Atlantic Oscillation (NAO) in the Southern Sub-Tropical Convergence Zone (SSTC),which explained 90% of the variability. There were also positive correlations with NAO in the Canary Current Coastal Upwelling (CNRY) and Western Tropical Atlantic (WTRA)which explained 80% and 60% of the variability in each province, respectively. MEI and NAO seem to play a role in modifying phases of net autotrophy and heterotrophy in the Atlantic Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrated Ocean Drilling Program (IODP) Site U1313, located at the northern boundary of the subtropical gyre in the central North Atlantic, lies within the southern part of the ice-rafted debris belt. Seventy-three palynological samples were studied from an uninterrupted interval ca. 726–603 ka (upper Marine Isotope Stage [MIS] 18 through lower MIS 15) to resolve conflicting paleoceanographic interpretations. Glacial stages were characterized by high productivity surface waters reflecting a southward shift of the Arctic Front. Sea surface salinities (SSSs) and sea surface temperatures (SSTs) were obtained by transfer functions using the Modern Analogue Technique. The lowest SSTs of 9ºC (±1.3) and 10ºC (±1.3) were recorded in glacial MIS 16 and MIS 18 respectively. However, these reconstructions are influenced by abundant heterotrophic taxa and may reflect elevated nutrient levels rather than lowered temperatures. Reworked palynomorphs uniquely indicate a Cretaceous as well as Paleozoic provenance for the first Heinrich-like events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, a detailed attempt has been made to understand the general hydrography of the upper 300m of the water column, in the eastern Arabian Sea and the western Bay of Bengal, the two contrasting basins in the northern Indian Ocean, using recently collected data sets of Marine Research-Living Resources (MR-LR) assessment programme, funded by Department of Ocean Development, from various cruises, pertaining to different seasons. Initially it discuss the general hydrography of the west and east coasts of India are covered, in the context of mixed layer processes. The study describes the materials and methods . To compare the hydrography of the AS and BOB, a unique MLD(Mixed Layer Depth) definition for AS and BOB is essential, for which the 275 CTD profiles were used. A comparison has been made among the various MLD criteria with the actual MLD. The monthly evolution of MLD, barrier layer thickness and the role of atmospheric forcing on the dynamics of the mixed layer in the AS and BOB were studied. The general hydrography along the west coast of India is described. The upwelling/downwelling, winter cooling processes, in the context of chemical and biological parameters, are also addressed. Finally the general hydrography of the Bay of Bengal is covered. The most striking feature in the hydrography are the signature of an anticyclonic subtropical gyre during spring intermonsoon and a cold core eddy during winter monsoon. The TTS(Typical Tropical Structure) of the euphotic layer was also investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent observations from the Argo dataset of temperature and salinity profiles are used to evaluate a series of 3-year data assimilation experiments in a global ice–ocean general circulation model. The experiments are designed to evaluate a new data assimilation system whereby salinity is assimilated along isotherms, S(T ). In addition, the role of a balancing salinity increment to maintain water mass properties is investigated. This balancing increment is found to effectively prevent spurious mixing in tropical regions induced by univariate temperature assimilation, allowing the correction of isotherm geometries without adversely influencing temperature–salinity relationships. In addition, the balancing increment is able to correct a fresh bias associated with a weak subtropical gyre in the North Atlantic using only temperature observations. The S(T ) assimilation method is found to provide an important improvement over conventional depth level assimilation, with lower root-mean-squared forecast errors over the upper 500 m in the tropical Atlantic and Pacific Oceans. An additional set of experiments is performed whereby Argo data are withheld and used for independent evaluation. The most significant improvements from Argo assimilation are found in less well-observed regions (Indian, South Atlantic and South Pacific Oceans). When Argo salinity data are assimilated in addition to temperature, improvements to modelled temperature fields are obtained due to corrections to model density gradients and the resulting circulation. It is found that observations from the Argo array provide an invaluable tool for both correcting modelled water mass properties through data assimilation and for evaluating the assimilation methods themselves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we make an initial step toward the development of an ocean assimilation system that can constrain the modelled Atlantic Meridional Overturning Circulation (AMOC) to support climate predictions. A detailed comparison is presented of 1° and 1/4° resolution global model simulations with and without sequential data assimilation, to the observations and transport estimates from the RAPID mooring array across 26.5° N in the Atlantic. Comparisons of modelled water properties with the observations from the merged RAPID boundary arrays demonstrate the ability of in situ data assimilation to accurately constrain the east-west density gradient between these mooring arrays. However, the presence of an unconstrained "western boundary wedge" between Abaco Island and the RAPID mooring site WB2 (16 km offshore) leads to the intensification of an erroneous southwards flow in this region when in situ data are assimilated. The result is an overly intense southward upper mid-ocean transport (0–1100 m) as compared to the estimates derived from the RAPID array. Correction of upper layer zonal density gradients is found to compensate mostly for a weak subtropical gyre circulation in the free model run (i.e. with no assimilation). Despite the important changes to the density structure and transports in the upper layer imposed by the assimilation, very little change is found in the amplitude and sub-seasonal variability of the AMOC. This shows that assimilation of upper layer density information projects mainly on the gyre circulation with little effect on the AMOC at 26° N due to the absence of corrections to density gradients below 2000 m (the maximum depth of Argo). The sensitivity to initial conditions was explored through two additional experiments using a climatological initial condition. These experiments showed that the weak bias in gyre intensity in the control simulation (without data assimilation) develops over a period of about 6 months, but does so independently from the overturning, with no change to the AMOC. However, differences in the properties and volume transport of North Atlantic Deep Water (NADW) persisted throughout the 3 year simulations resulting in a difference of 3 Sv in AMOC intensity. The persistence of these dense water anomalies and their influence on the AMOC is promising for the development of decadal forecasting capabilities. The results suggest that the deeper waters must be accurately reproduced in order to constrain the AMOC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green's function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3 degrees resolution. Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air-sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland-Scotland ridge (sigma (0) < 27.82 kg m(-3); shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux-twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv = 10(6) m(3) s(-1)) for subtropical mode water and subpolar mode water, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ther mohaline exchange between the Atlantic and the Souther n Ocean is analyzed, using a dataset based on WOCE hydrographic data. It is shown that the salt and heat transports brought about by the South Atlantic subtropical gyre play an essential role in the Atlantic heat and salt budgets. It is found that on average the exported North Atlantic Deep W ater (NADW) is fresher than the retur n flows (basically composed of ther mocline and inter mediate water), indicating that the overtur ning circulation (OC) exports freshwater from the Atlantic. The sensitivity of the OC to interbasin fluxes of heat and salt is studied in a 2 D model, representing the Atlantic between 60 8 N and 30 8 S. The model is forced by mixed boundar y conditions at the sur face, and by realistic fluxes of heat and salt at its 30 8 S boundar y. The model circulation tur ns out to be ver y sensitive to net buoyancy fluxes through the sur face. Both net sur face cooling and net sur face saltening are sources of potential energy and impact positively on the circulation strength. The vertical distributions of the lateral fluxes tend to stabilize the stratification, and, as they extract potential energy from the system, tend to weaken the flow . These results imply that a change in the composition of the NADW retur n transports, whether by a change in the ratio ther mocline/inter mediate water , o r by a change in their ther mohaline characteristics, might influence the Atlantic OC considerably . It is also shown that the circulation is much more sensitive to changes in the shape of the lateral buoyancy flux than to changes in the shape of the sur face buoyancy flux, as the latter does not explicitly impact on the potential energy of the system. It is concluded that interocean fluxes of heat and salt are important for the strength and operation of the Atlantic ther mohaline circulation, and should be correctly represented in models that are used for climate sensitivity studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Last Glacial Maximum simulated sea surface temperature from the Paleo-Climate version of the National Center for Atmospheric Research Coupled Climate Model (NCAR-CCSM) are compared with available reconstructions and data-based products in the tropical and south Atlantic region. Model results are compared to data proxies based on the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface product (MARGO). Results show that the model sea surface temperature is not consistent with the proxy-data in all of the region of interest. Discrepancies are found in the eastern, equatorial and in the high-latitude South Atlantic. The model overestimates the cooling in the southern South Atlantic (near 50 degrees S) shown by the proxy-data. Near the equator, model and proxies are in better agreement. In the eastern part of the equatorial basin the model underestimates the cooling shown by all proxies. A northward shift in the position of the subtropical convergence zone in the simulation suggests a compression or/and an equatorward shift of the subtropical gyre at the surface, consistent with what is observed in the proxy reconstruction. (C) 2008 Elsevier B.V. All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in the oceanic heat storage (HS) can reveal important evidences of climate variability related to ocean heat fluxes. Specifically, long-term variations in HS are a powerful indicator of climate change as HS represents the balance between the net surface energy flux and the poleward heat transported by the ocean currents. HS is estimated from sea surface height anomaly measured from the altimeters TOPEX/Poseidon and Jason 1 from 1993 to 2006. To characterize and validate the altimeter-based HS in the Atlantic, we used the data from the Pilot Research Moored Array in the Tropical Atlantic (PIRATA) array. Correlations and rms differences are used as statistical figures of merit to compare the HS estimates. The correlations range from 0.50 to 0.87 in the buoys located at the equator and at the southern part of the array. In that region the rms differences range between 0.40 and 0.51 x 10(9) Jm(-2). These results are encouraging and indicate that the altimeter has the precision necessary to capture the interannual trends in HS in the Atlantic. Albeit relatively small, salinity changes can also have an effect on the sea surface height anomaly. To account for this effect, NCEP/GODAS reanalysis data are used to estimate the haline contraction. To understand which dynamical processes are involved in the HS variability, the total signal is decomposed into nonpropagating basin-scale and seasonal (HS(l)) planetary waves, mesoscale eddies, and small-scale residual components. In general, HS(l) is the dominant signal in the tropical region. Results show a warming trend of HS(l) in the past 13 years almost all over the Atlantic basin with the most prominent slopes found at high latitudes. Positive interannual trends are found in the halosteric component at high latitudes of the South Atlantic and near the Labrador Sea. This could be an indication that the salinity anomaly increased in the upper layers during this period. The dynamics of the South Atlantic subtropical gyre could also be subject to low-frequency changes caused by a trend in the halosteric component on each side of the South Atlantic Current.