928 resultados para Substrate-reduction activity
Resumo:
Arylamine N-acetyltransferase-1 (NAT1) is a polymorphically expressed enzyme that is widely distributed throughout the body. In the present study, we provide evidence for substrate-dependent regulation of this enzyme. Human peripheral blood mononuclear cells cultured in medium supplemented with p-aminobenzoic acid (PABA; 6 mu M) for 24 h showed a significant decrease (50-80%) in NAT1 activity. The loss of activity was concentration-dependent (EC50 similar to 2 mu M) and selective because PABA had no effect on the activity of constitutively expressed lactate dehydrogenase or aspartate aminotransferase. PABA also induced down-regulation of NAT1 activity in several human cell lines grown at confluence. Substrate-dependent downregulation was not restricted to PABA. Addition of other NAT1 substrates, such as p-aminosalicylic acid, ethyl-p-aminobenzoate, or p-aminophenol to peripheral blood mononuclear cells in culture also resulted in significant (P < .05) decreases in NAT1 activity. However, addition of the NAT2-selective substrates sulfamethazine, dapsone, or procainamide did not alter NAT1 activity. Western blot analysis using a NAT1-specific antibody showed that the loss of NAT1 activity was associated with a parallel reduction in the amount of NAT1 protein (r(2) = 0.95). Arylamines that did not decrease NAT1 activity did not alter NAT1 protein levels. Semiquantitative reverse transcriptase polymerase chain reaction of mRNA isolated from treated and untreated cells revealed no effect of PABA on NAT1 mRNA levels. We conclude that NAT1 can be down-regulated by arylamines that are themselves NAT1 substrates. Because NAT1 is involved in the detoxification/activation of various drugs and carcinogens, substrate-dependent regulation may have important consequences with regard to drug toxicity and cancer risk.
Resumo:
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n = 9, 1 mg/day) or placebo (n = 9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59 +/- 2 vs. 71 +/- 2 beats/min, P < 0.01). In both groups, exercise produced significant decreases in systolic BP (145 +/- 3 vs. 154 +/- 3 mmHg, P = 0.01), diastolic BP (71 +/- 3 vs. 75 +/- 2 mmHg, P = 0.04), mean BP (89 +/- 2 vs. 93 +/- 2 mmHg, P = 0.02), MSNA (29 +/- 2 vs. 35 +/- 1 bursts/min, P < 0.01), and FVR (33 +/- 4 vs. 55 +/- 10 units, P = 0.01), whereas it increased FBF (2.7 +/- 0.4 vs. 1.6 +/- 0.2 ml (.) min(-1) (.) 100 ml(-1), P = 0.02) and did not change HR (64 +/- 2 vs. 65 +/- 2 beats/min, P = 0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.
Resumo:
The cystine-glutamate antiporter is a transport system that facilitates the uptake of cystine, concomitant with the release of glutamate. The cystine accumulated by this transporter is generally considered for use in the formation of the cysteine-containing antioxidant glutathione, which is abundant in many glial cells. This study used the simple strategy of generating an antibody to aminoadipic acid, a selective substrate for the cystine-glutamate antiporter. Stereospecific accumulation of aminoadipic acid into specific cell types in rat brain slice preparations was detected immunocytochemically. Strong accumulation was detected in astroglial cells in all brain regions studied including those in white matter tracts. Strong accumulation into radial glial cells, including the retinal Muller cells and the Bergmann glial cells was also observed. Glial accumulation was observed not only in cells within the blood brain barrier, but also outside such; anterior pituitary folliculostellate cell and intermediate lobe pituitary glial cells exhibited strong accumulation of aminoadipic acid. Interestingly, some glial cells such as the posterior pituitary glial cells (pituicytes) exhibited very little if any accumulation of aminoadipic acid. Within the brain labelling was not uniform. Particularly strong labelling was noted in some regions, such as the glial cells surrounding the CA1 pyramidal cells. By contrast, neurons never exhibited uptake of aminoadipic acid. Because cystine uptake is associated with glutamate release, it is suggested that this antiporter might contribute to release of glutamate from glial cells under some pathophysiological conditions. (C) 2001 Wiley-Liss, Inc.
Resumo:
Three new peptidomimetics (1-3) have been developed with highly stable and conformationally constrained macrocyclic components that replace tripeptide segments of protease substrates. Each compound inhibits both HIV-1 protease and viral replication (HIV-I, HIV-2) at nanomolar concentrations without cytotoxicity to uninfected cells below 10 mu M. Their activities against HIV-1 protease (K-i 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral blood mononuclear cells (IC50 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 cells (IC50 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake. However their antiviral potencies are similar to those of indinavir and amprenavir under identical conditions. There were significant differences in their capacities to inhibit the replication of HIV-1 and HIV-2 in infected MT2 cells, 1 being ineffective against HIV-2 while 2 was equally effective against both virus types. Evidence is presented that 1 and 2 inhibit cleavage of the HIV-1 structural protein precursor Pr55(gag) to p24 in virions derived from chronically infected cells, consistent with inhibition of the viral protease in cells. Crystal structures refined to 1.75 Angstrom (1) and 1.85 Angstrom (2) for two of the macrocyclic inhibitors bound to HIV-1 protease establish structural mimicry of the tripeptides that the cycles were designed to imitate. Structural comparisons between protease-bound macrocyclic inhibitors, VX478 (amprenavir), and L-735,524 (indinavir) show that their common acyclic components share the same space in the active site of the enzyme and make identical interactions with enzyme residues. This substrate-mimicking minimalist approach to drug design could have benefits in the context of viral resistance, since mutations which induce inhibitor resistance may also be those which prevent substrate processing.
Resumo:
The interaction of a variety of substrates with Pseudomonas aeruginosa native amidase (E.C. 3.5.1.4), overproduced in an Escherichia coli strain, was investigated using difference FTIR spectroscopy. The amides used as substrates showed an increase in hydrogen bonding upon association in multimers, which was not seen with esters. Evidence for an overall reduction or weakening of hydrogen bonding while amide and ester substrates are interacting with the enzyme is presented. The results describe a spectroscopic approach for analysis of substrate-amidase interaction and in situ monitoring of the hydrolysis and transferase reaction when amides or esters are used as substrates.
Resumo:
The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05) for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s.), respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent) binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01) for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01) before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1 female) were also studied. The G6PD and glutathione reductase were partially activated, the change being more intense in males. On the basis of race and of the laboratory characteristics observed, it is possible to suggest that the G6PD deficiency of these individuals is of the African type and that the female is heterozygous for this deficiency. Analysis of the results as a whole permitted us to conclude that the methods proposed here were efficient for evaluating the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The latter is dependent on the pentose pathway, which generates NADPH, and on riboflavin, a FAD precursor vitamin.
Resumo:
Introduction Sporothrix schenckii is a thermal dimorphic pathogenic fungus causing a subcutaneous mycosis, sporotrichosis. Nitrocoumarin represents a fluorogenic substrate class where the microbial nitroreductase activity produces several derivatives, already used in several other enzyme assays. The objective of this study was the analysis of 6-nitrocoumarin (6-NC) as a substrate to study the nitroreductase activity in Sporothrix schenckii. Methods Thirty-five samples of S. schenckii were cultivated for seven, 14 and 21 days at 35 °C in a microculture containing 6-nitrocoumarin or 6-aminocoumarin (6-AC) dissolved in dimethyl sulfoxide or dimethyl sulfoxide as a negative control, for posterior examination under an epifluorescence microscope. The organic layer of the seven, 14 and 21-day cultures was analyzed by means of direct illumination with 365 nm UV light and by means of elution on G silica gel plate with hexane:ethyl acetate 1:4 unveiled with UV light. Results All of the strains showed the presence of 6-AC (yellow fluorescence) and 6-hydroxylaminocoumarin (blue fluorescence) in thin layer chromatography, which explains the green fluorescence observed in the fungus structure. Conclusion The nitroreductase activity is widely distributed in the S. schenckii complex and 6-NC is a fluorogenic substrate of easy access and applicability for the nitroreductase activity detection.
Resumo:
J Biol Inorg Chem (2010) 15:967–976 DOI 10.1007/s00775-010-0658-6
Resumo:
Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).
Resumo:
Energy substrate used by workers of leaf-cutting ants during nest excavation. In this study we aimed to ascertain whether leaf-cutting ant workers lose body reserves (fat or sugars) as a function of nest excavation. For each treatment, we isolated 10 workers of Atta sexdens into two experimental groups, Control (C- without excavation) and Soil (S- with excavation), which were kept for different time intervals (0, 24, 48 or 72 hours), totaling 700 tested workers. We then determined the concentration of soluble carbohydrates and total lipid content in them. The total carbohydrates were determined colorimetrically, based on the reaction between carbohydrates and sulfuric acid-phenol. For determination of lipids, the insects were immersed in organic solvent until they reached a constant weight. Our results showed that carbohydrates are consumed during nest excavation activities. In the experimental groups S24, S48 and S72, there was an average reduction of 5.82 (20.42%), 14.31 (44.96%) and 13.27 (43.96%) µ.mg-1 in soluble sugar when compared with the experimental groups that did not excavate. Furthermore, the lipids were not used during this activity. With respect to dry mass of the workers, their values were C0 = 8%, C24 = 10.4%, C48 = 9.2%, C72 = 10%, S24 = 9.2%, S48 = 8.7% and S72 = 8.5%. Our results show experimentally that the source of energy for nest excavation is carbohydrates, whereas lipids are conserved for other activities.
Resumo:
Alcohol (ethanol; EtOH) provides fuel energy to the body (29.7 kJ (7. 1 kcal)/g, 23.4 kJ (5.6 kcal)/ml), as do other macronutrients, but no associated essential nutrients. The thermogenic effect of EtOH (on average 15 % of its metabolizable value) is much greater than that of the main substrates utilized by the body, i.e. fat and carbohydrates (CHO), suggesting a lower net efficiency of energy utilization for EtOH than for fat and CHO. EtOH cannot be stored in the body and is toxic, so that there is an obligatory continuous oxidation of EtOH and it becomes the priority fuel to be metabolized. In contrast to CHO, its rate of oxidation does not depend on the dose ingested. As with CHO intake, it engenders a shift in postprandial substrate utilization (decrease in fat oxidation), but by a non-insulin-mediated mechanism. A limited amount of EtOH can be converted to fatty acids by hepatic de novo lipogenesis (as occurs with high levels of CHO feeding) from acetate production, which inhibits lipolysis in peripheral tissues. There is no evidence that EtOH consumed under normoenergetic conditions (i.e. isoenergetically replacing CHO or fat) leads to greater body fat storage than fat or CHO. However, there is still a lack of experimental studies on the influence of EtOH on the level of spontaneous physical activity in man. This effect may well depend on the dose of EtOH consumed as well as other intrinsic factors.
Resumo:
In a previous study, we demonstrated that the new beta-adrenoceptor agonist Ro 16-8714 possesses thermogenic property in normal male volunteers. The aim of the present study was to compare the metabolic response of lean vs obese individuals to a similar dose of this compound. Following an overnight fast, Ro 16-8714 (0.17 mg/kg fat free mass) or a placebo was given per os to six normal-weight subjects and to six moderately obese subjects. The rate of energy expenditure (EE) and the substrate utilization were determined by indirect calorimetry (hood system) before and for 6 h following the drug administration. Heart rate and blood pressure as well as plasma glucose, insulin and free fatty acid (FFA) concentrations were also measured at regular intervals throughout the study. The increment relative to base-line (mean +/- s.e.m.) in EE was similar in the two groups and averaged 4.0 +/- 1.4 per cent and 12.2 +/- 1.4 per cent with placebo and with Ro 16-8714 respectively in lean subjects, whereas the values reached 3.5 +/- 1.2 per cent and 14.4 +/- 2.0 per cent in obese subjects. Heart rate, systolic blood pressure, insulin and FFA were increased without any significant difference between the two groups. This study shows that Ro 16-8714 is a potent thermogenic agent both in normal and obese subjects.
Resumo:
BACKGROUND AND AIMS: Sustained adipose activation of the transcriptional activators cAMP response binding proteins (CREB) in obesity leads to impaired expression of the glucose transporter GLUT4 and adiponectin (adipoq) in mice model of obesity. Diminution of GLUT4 and adipoq caused by CREB is indirect and relies on the increased repressive activity of the CREB target gene activating transcription factor 3 (ATF3). Specific inactivation of CREB in adipocytes decreases ATF3 production and improves whole-body insulin sensitivity of mice in the context of diet-induced obesity. Thus, elevation of CREB activity is a key mechanism responsible for adipocyte dysfunction and systemic insulin resistance. The inducible cAMP early repressor (ICER) is a negative regulator of the CREB activity. In fact, ICER antagonizes the CREB factor by competing for the regulation of similar target genes. The goal of the study was to investigate whether loss of ICER expression in adipocytes could be responsible for increased CREB activity in obesity. MATERIALS AND METHODS: Mice C57bl6 were fed with a high fat diet (HFD) for 12 weeks to increase body weight and generate insulin resistance. Biopsies of visceral adipose tissues (VAT) were prepared from human lean (BMI=24}0.5 Kg/m2) or obese subjects (BMI>35 Kg/m2). Total RNA and protein were prepared from white adipose tissues (WAT) of chow- or HFD-fed mice and VAT of lean and obese subjects. Activities of CREBs and ICER were monitored by electromobility shift assays (EMSA). The role of ICER on CREB activity was confirmed in 3T3-L1 adipocytes cells. Briefly after differentiation, the cells were electroporated with the plasmid coding for ICER cDNA. Gene expression was quantified by quantitative real-time PCR and western Blotting experiments. RESULTS: The expression of ICER is reduced in WAT of HFD-induced obese mice when compared to chow mice as measured by real-time PCR and EMSA. Similar result was found in human tissues. Reduction in ICER expression was associated with increased ATF3 expression and decreased adipoq and GLUT4 contents. Diminution in ICER levels was observed in adipocytes fraction whereas its expression was unchanged in stroma vascular fraction of WAT. Overexpression of ICER in 3T3-L1 adipocytes silenced the expression of ATF3, confirming the regulation of the factor by ICER. The expression of ICER is regulated by histone deacetylases activity (HDAC). Inhibition of HDACs in 3T3-L1 adipocytes cells using trichostatin inhibited the production of ICER. The whole activity of HDAC was reduced in WAT and VAT of obese mice and human obese subjects. CONCLUSION: Impaired adipose expression of ICER is responsible of increased CREB activity in adipocytes in obesity. This mechanism relies on reduction of the HDAC activity.