959 resultados para Subgrid-scale Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of the application of a multi scale CAFE model to prediction of the strain localization phenomena in industrial processes, such as extrusion, is presented in this work. Extrusion involves the formation of a strong strain localization zone, which influences the final product microstructure and may lead to a coarse grain layer close to the surface. Modelling of the shape of this zone and prediction of the strain magnitude will allow computer aided design of the extrusion process and optimisation of the technological parameters with respect to the microstructure and properties of the products. Thus, the particular objective of this work is comparison of the FE and CAFE predictions of strain localization in the shear zone area in extrusion. Advantages and disadvantages of the developed CAFE model are also discussed on the basis of the simulation results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mathematical model for the galvanostatic discharge and recovery of porous, electrolytic manganese dioxide cathodes, similar to those found within primary alkaline batteries is presented. The phenomena associated with discharge are modeled over three distinct size scales, a cathodic (or macroscopic) scale, a porous manganese oxide particle (or microscopic) scale, and a manganese oxide crystal (or submicroscopic) scale. The physical and chemical coupling between these size scales is included in the model. In addition, the model explicitly accounts for the graphite phase within the cathode. The effects that manganese oxide particle size and proton diffusion have on cathodic discharge and the effects of intraparticle voids and microporous electrode structure are predicted using the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The field of epigenetics looks at changes in the chromosomal structure that affect gene expression without altering DNA sequence. A large-scale modelling project to better understand these mechanisms is gaining momentum. Early advances in genetics led to the all-genetic paradigm: phenotype (an organism's characteristics/behaviour) is determined by genotype (its genetic make-up). This was later amended and expressed by the well-known formula P = G + E, encompassing the notion that the visible characteristics of a living organism (the phenotype, P) is a combination of hereditary genetic factors (the genotype, G) and environmental factors (E). However, this method fails to explain why in diseases such as schizophrenia we still observe differences between identical twins. Furthermore, the identification of environmental factors (such as smoking and air quality for lung cancer) is relatively rare. The formula also fails to explain cell differentiation from a single fertilized cell. In the wake of early work by Waddington, more recent results have emphasized that the expression of the genotype can be altered without any change in the DNA sequence. This phenomenon has been tagged as epigenetics. To form the chromosome, DNA strands roll over nucleosomes, which are a cluster of nine proteins (histones), as detailed in Figure 1. Epigenetic mechanisms involve inherited alterations in these two structures, eg through attachment of a functional group to the amino acids (methyl, acetyl and phosphate). These 'stable alterations' arise during development and cell proliferation and persist through cell division. While information within the genetic material is not changed, instructions for its assembly and interpretation may be. Modelling this new paradigm, P = G + E + EpiG, is the object of our study.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides an overview of research on modelling of the structure–property interactions of polymer nanocomposites in manufacturing processes (stretch blow moulding and thermoforming) involving large-strain biaxial stretching of relatively thin sheets, aimed at developing computer modelling tools to help producers of materials, product designers and manufacturers exploit these materials to the full, much more quickly than could be done by experimental methods alone. The exemplar systems studied are polypropylene and polyester terephalate, with nanoclays. These were compounded and extruded into 2mm thick sheet which was then biaxially stretched at 155°C for the PP and 90 to 100°C for the PET. Mechanical properties were determined for the unstretched and stretched materials, together with TEM and XRD studies of structure. Multi-scale modelling, using representative volume elements is used to model the properties of these products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A multi-scale framework for decision support is presented that uses a combination of experiments, models, communication, education and decision support tools to arrive at a realistic strategy to minimise diffuse pollution. Effective partnerships between researchers and stakeholders play a key part in successful implementation of this strategy. The Decision Support Matrix (DSM) is introduced as a set of visualisations that can be used at all scales, both to inform decision making and as a communication tool in stakeholder workshops. A demonstration farm is presented and one of its fields is taken as a case study. Hydrological and nutrient flow path models are used for event based simulation (TOPCAT), catchment scale modelling (INCA) and field scale flow visualisation (TopManage). One of the DSMs; The Phosphorus Export Risk Matrix (PERM) is discussed in detail. The PERM was developed iteratively as a point of discussion in stakeholder workshops, as a decision support and education tool. The resulting interactive PERM contains a set of questions and proposed remediation measures that reflect both expert and local knowledge. Education and visualisation tools such as GIS, risk indicators, TopManage and the PERM are found to be invaluable in communicating improved farming practice to stakeholders. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advanced high strength steel sheets are one of the higher strength advance material developed by the steel industry for automotive bodies. One of the categories of this advanced high strength steel is Dual Phase (DP) steel. This steel consists of a two phase microstructure where soft and hard phase acts together to offer a high strength composite effect. The combination of high strength and ductility exhibited by these sheets allows the design and manufacture of complex parts. However, during forming certain grades of DP steel sudden cracking can occur without any intimation of necking. This abnormal forming behavior is difficult to accurately predict because most classical modelling approaches are not designed for such micro-structurally heterogeneous materials. These modelling approaches are generally based on an average representation of the material behaviour in a continuum mechanics formulation. This works for materials that are homogenous, or at least could be assumed to be homogenous at scales lower than the naked eye can see. However, for a material like advanced high strength steel, the microstructure plays a significant role in dictating the mechanical behavior at the macro-scale. This paper studies the forming and fracture behavior through multi-scale modeling of DPO590 steel. It is found that the sufficient accuracy can be achieved from multi-scale modeling when comparing with experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As population change places pressure on expanding regional and metropolitan urban boundaries, so the threat of bushfire at the rural/urban interface increases. This paper presents a range of 2D and 3D 1:40 and full scale modelling investigations. Various relationships are explored between the urban and rural interface with respect to: air pressure; changes in wind pattern; vectorial velocity; and the deposition of hot ash and firebrand deposits around single story building forms, both as standalone and within an orthogonal array and cul-de-sac relationships.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present and analyze a subgrid viscosity Lagrange-Galerk in method that combines the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comp., 133: 14 7-157, 2002, and a conventional Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results in an efficient and easy to implement stabilized method for convection dominated convection diffusion reaction problems. Numerical experiments support the numerical analysis results and show that the new method is more accurate than the conventional Lagrange-Galerkin one.