992 resultados para Structural reliability
Resumo:
In this paper, the effects of uncertainty and expected costs of failure on optimum structural design are investigated, by comparing three distinct formulations of structural optimization problems. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects parameter uncertainty and its effects on structural safety. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probabilities used as constraints in the analysis. Risk optimization (RO) increases the scope of the problem by addressing the compromising goals of economy and safety. This is accomplished by quantifying the monetary consequences of failure, as well as the costs associated with construction, operation and maintenance. RO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when optimum safety coefficients are used as constraints in DDO, the formulation leads to configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected costs of failure). When (optimum) system failure probability is used as a constraint in RBDO, this solution also reduces manufacturing costs but by increasing total expected costs. This happens when the costs associated with different failure modes are distinct. Hence, a general equivalence between the formulations cannot be established. Optimum structural design considering expected costs of failure cannot be controlled solely by safety factors nor by failure probability constraints, but will depend on actual structural configuration. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.
Resumo:
This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The three-dimensional structures of leucine-rich repeat (LRR) -containing proteins from five different families were previously predicted based on the crystal structure of the ribonuclease inhibitor. using an approach that combined homology-based modeling, structure-based sequence alignment of LRRs, and several rational assumptions. The structural models have been produced based on very limited sequence similarity, which, in general. cannot yield trustworthy predictions. Recently, the protein structures from three of these five families have been determined. In this report we estimate the quality of the modeling approach by comparing the models with the experimentally determined structures. The comparison suggests that the general architecture, curvature, interior/exterior orientations of side chains. and backbone conformation of the LRR structures can be predicted correctly. On the other hand. the analysis revealed that, in some cases. it is difficult to predict correctly the twist of the overall super-helical structure. Taking into consideration the conclusions from these comparisons, we identified a new family of bacterial LRR proteins and present its structural model. The reliability of the LRR protein modeling suggests that it would be informative to apply similar modeling approaches to other classes of solenoid proteins.
Resumo:
Variations of manufacturing process parameters and environmental aspects may affect the quality and performance of composite materials, which consequently affects their structural behaviour. Reliability-based design optimisation (RBDO) and robust design optimisation (RDO) searches for safe structural systems with minimal variability of response when subjected to uncertainties in material design parameters. An approach that simultaneously considers reliability and robustness is proposed in this paper. Depending on a given reliability index imposed on composite structures, a trade-off is established between the performance targets and robustness. Robustness is expressed in terms of the coefficient of variation of the constrained structural response weighted by its nominal value. The Pareto normed front is built and the nearest point to the origin is estimated as the best solution of the bi-objective optimisation problem.
Resumo:
OBJECTIVE To evaluate the validity and reliability of an instrument that evaluates the structure of primary health care units for the treatment of tuberculosis.METHODS This cross-sectional study used simple random sampling and evaluated 1,037 health care professionals from five Brazilian municipalities (Natal, state of Rio Grande do Norte; Cabedelo, state of Paraíba; Foz do Iguaçu, state of Parana; Sao José do Rio Preto, state of Sao Paulo, and Uberaba, state of Minas Gerais) in 2011. Structural indicators were identified and validated, considering different methods of organization of the health care system in the municipalities of different population sizes. Each structure represented the organization of health care services and contained the resources available for the execution of health care services: physical resources (equipment, consumables, and facilities); human resources (number and qualification); and resources for maintenance of the existing infrastructure and technology (deemed as the organization of health care services). The statistical analyses used in the validation process included reliability analysis, exploratory factor analysis, and confirmatory factor analysis.RESULTS The validation process indicated the retention of five factors, with 85.9% of the total variance explained, internal consistency between 0.6460 and 0.7802, and quality of fit of the confirmatory factor analysis of 0.995 using the goodness-of-fit index. The retained factors comprised five structural indicators: professionals involved in the care of tuberculosis patients, training, access to recording instruments, availability of supplies, and coordination of health care services with other levels of care. Availability of supplies had the best performance and the lowest coefficient of variation among the services evaluated. The indicators of assessment of human resources and coordination with other levels of care had satisfactory performance, but the latter showed the highest coefficient of variation. The performance of the indicators “training” and “access to recording instruments” was inferior to that of other indicators.CONCLUSIONS The instrument showed feasibility of application and potential to assess the structure of primary health care units for the treatment of tuberculosis.
Resumo:
Dynamically reconfigurable SRAM-based field-programmable gate arrays (FPGAs) enable the implementation of reconfigurable computing systems where several applications may be run simultaneously, sharing the available resources according to their own immediate functional requirements. To exclude malfunctioning due to faulty elements, the reliability of all FPGA resources must be guaranteed. Since resource allocation takes place asynchronously, an online structural test scheme is the only way of ensuring reliable system operation. On the other hand, this test scheme should not disturb the operation of the circuit, otherwise availability would be compromised. System performance is also influenced by the efficiency of the management strategies that must be able to dynamically allocate enough resources when requested by each application. As those resources are allocated and later released, many small free resource blocks are created, which are left unused due to performance and routing restrictions. To avoid wasting logic resources, the FPGA logic space must be defragmented regularly. This paper presents a non-intrusive active replication procedure that supports the proposed test methodology and the implementation of defragmentation strategies, assuring both the availability of resources and their perfect working condition, without disturbing system operation.
Resumo:
Structure and Infrastructure Engineering, 1-17
Resumo:
This work is a contribution to the definition and assessment of structural robustness. Special emphasis is given to reliability of reinforced concrete structures under corrosion of longitudinal reinforcement. On this communication several authors’ proposals in order to define and measure structural robustness are analyzed and discussed. The probabilistic based robustness index is defined, considering the reliability index decreasing for all possible damage levels. Damage is considered as the corrosion level of the longitudinal reinforcement in terms of rebar weight loss. Damage produces changes in both cross sectional area of rebar and bond strength. The proposed methodology is illustrated by means of an application example. In order to consider the impact of reinforcement corrosion on failure probability growth, an advanced methodology based on the strong discontinuities approach and an isotropic continuum damage model for concrete is adopted. The methodology consist on a two-step analysis: on the first step an analysis of the cross section is performed in order to capture phenomena such as expansion of the reinforcement due to the corrosion products accumulation and damage and cracking in the reinforcement surrounding concrete; on the second step a 2D deteriorated structural model is built with the results obtained on the first step of the analysis. The referred methodology combined with a Monte Carlo simulation is then used to compute the failure probability and the reliability index of the structure for different corrosion levels. Finally, structural robustness is assessed using the proposed probabilistic index.
Resumo:
RESUMO: Enthesitis is the hallmark of spondyloarthritis (SpA), and is observed in all subtypes. Wide information on SpA abnormalities, including synovitis, tendinitis and enthesitis, can be efficiently perceived by Doppler ultrasound. Furthermore, several studies on imaging of enthesis showed that imaging techniques are better than clinical examination to detect enthesis alterations; and vascularized enthesitis detected by Doppler ultrasound appears to be a valuable diagnostic tool to confirm SpA diagnosis. However, data published until now concerning entheseal elementary alterations that characterize SpA enthesitis (enthesis inflammatory activity) or enthesopathy (permanent structural changes) reflect rather the authors’ empiric opinion than a methodological validation process. In this sense it seems crucial to identify elementary entheseal lesions associated with activity or damage, in order to improve monitoring and treatment response in SpA patients. The development of better assessment tools is today a challenge and a need in SpA. The first study of this thesis focused on the analysis of the reliability of inter-lector and inter-ultrasonography equipment of Madrid sonography enthesitis index (MASEI). Fundamental data for the remaining unrolling project validity. In the second and third studies we concerned about two entheseal elemental lesions: erosions and bursa. In literature erosions represent a permanent structural damage, being useful for monitoring joint injury, disease activity and therapeutic response in many rheumatic diseases; and to date, this concept has been mostly applied in rheumatoid arthritis (RA). Unquestionably, erosion is a tissue-related damage and a structural change. However, the hypothesis that we decided to test was if erosions represent a permanent structural change that can only grow and worsen over time, as occurs in RA, or a transitory alteration. A longitudinal study of early SpA patients was undertaken, and the Achilles enthesis was used as a model. Our results strongly suggested that previously detected erosions could disappear during the course of the disease, being consistent with the dynamic behavior of erosion over time. Based on these striking results it seems reasonable to suggest that the new-bone formation process in SpA could be associated with the resolution of cortical entheseal erosion over time. These results could also be in agreement with the apparent failure of anti-tumor necrosis factor (TNF) therapies to control bone proliferation in SpA; and with the relation of TNF-α, Dickkopf-related protein 1 (Dkk-1) and the regulatory molecule of the Wnt signaling pathway in the bone proliferation in SpA. In the same model, we then proceeded to study the enthesis bursa. Interestingly, the Outcome Measures in Rheumatology Clinical Trials (OMERACT) enthesopathy definition does not include bursa as an elementary entheseal lesion. Nonetheless, bursa was included in 46% of the enthesis studies in a recently systematic literature review, being in agreement with the concept of “synovio-entheseal complex” that includes the link between enthesitis and osteitis in SpA. It has been clarified in recent data that there is not only a close functional integration of the enthesis with the neighboring bone, but also a connection between enthesitis and synovitis. Therefore, we tried to assess the prevalence and relevance of the bursa-synovial lesion in SpA. Our findings showed a significant increase of Achilles bursa presence and thickness in SpA patients compared to controls (healthy/mechanical controls and RA controls). These results raise awareness to the need to improve the enthesopathy ultrasonographic definition. In the final work of this thesis, we have explored new perspectives, not previously reported, about construct validity of enthesis ultrasound as a possible activity outcome in SpA. We performed a longitudinal Achilles enthesis ultrasound study in patients with early SpA. Achilles ultrasound examinations were performed at baseline, six- and twelve-month time periods and compared with clinical outcome measures collected at basal visit. Our results showed that basal erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are higher in patients with Doppler signal in enthesis, and even that higher basal ESR, CRP and Ankylosing Spondylitis Disease Activity Score (ASDAS) predicted a higher Doppler signal (an ultrasound alteration accepted as representative of inflammation) six months later. Patients with very high disease activity assessed by ASDAS (>3.5) at baseline had significantly higher Achilles total ultrasound score verified at the same time; and ASDAS <1.3 predicted no Doppler signal at six and twelve months. This seems to represent a connection between classical biomarkers and clinical outcomes associated with SpA activity and Doppler signal, not only at the same time, but also for the following months. Remarkably, patients with inactive disease (ASDAS < 1.3) at baseline had no Doppler signal at six and twelve months. These findings reinforce the potential use of ultrasound related techniques for disease progression assessment and prognosis purposes. Intriguingly, Ankylosing Spondylitis Disease Activity Index (BASDAI) didn’t show significant differences between different cut-offs concerning ultrasound lesions or Doppler signal, while verified with ASDAS. These results seem to indicate that ASDAS reflects better than BASDAI what happens in the enthesis. The work herein discussed clearly shows the potential utility of ultrasound in enthesis assessment in SpA patients, and can be important for the development of ultrasound activity and structural damage scores for diagnosis and monitoring purposes. Therefore, local promotion of this technique constitutes a medical intervention that is worth being tested in SpA patients for diagnosis, monitoring and prognosis purposes.
Resumo:
A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T(1)-weighted 1.5T and 3T head scans acquired at 36 Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore.
Resumo:
The main goal of the thesis was to further develop harvester head saw device to the Finnish forest machine manufacturer. The work was done from the basis of the manufacturer´s current production model and the earlier study from this same subject called: “Development of chain saw for harvester” Tero Kaatrasalo, 2004. The work was focused to improving the serviceability and reliability of the saw device, but design also included adding few beforehand determined new features into the saw unit. This was done to give some added value for the end customer. The work includes analysis of the earlier saw devices and ideations of the improvements for the structure.