949 resultados para Structural Health
Wireless measurement system for structural health monitoring with high time synchronization accuracy
Resumo:
Structural health monitoring (SHM) systems have excellent potential to improve the regular operation and maintenance of structures. Wireless networks (WNs) have been used to avoid the high cost of traditional generic wired systems. The most important limitation of SHM wireless systems is time-synchronization accuracy, scalability, and reliability. A complete wireless system for structural identification under environmental load is designed, implemented, deployed, and tested on three different real bridges. Our contribution ranges from the hardware to the graphical front end. System goal is to avoid the main limitations of WNs for SHM particularly in regard to reliability, scalability, and synchronization. We reduce spatial jitter to 125 ns, far below the 120 μs required for high-precision acquisition systems and much better than the 10-μs current solutions, without adding complexity. The system is scalable to a large number of nodes to allow for dense sensor coverage of real-world structures, only limited by a compromise between measurement length and mandatory time to obtain the final result. The system addresses a myriad of problems encountered in a real deployment under difficult conditions, rather than a simulation or laboratory test bed.
Resumo:
En muchas áreas de la ingeniería, la integridad y confiabilidad de las estructuras son aspectos de extrema importancia. Estos son controlados mediante el adecuado conocimiento de danos existentes. Típicamente, alcanzar el nivel de conocimiento necesario que permita caracterizar la integridad estructural implica el uso de técnicas de ensayos no destructivos. Estas técnicas son a menudo costosas y consumen mucho tiempo. En la actualidad, muchas industrias buscan incrementar la confiabilidad de las estructuras que emplean. Mediante el uso de técnicas de última tecnología es posible monitorizar las estructuras y en algunos casos, es factible detectar daños incipientes que pueden desencadenar en fallos catastróficos. Desafortunadamente, a medida que la complejidad de las estructuras, los componentes y sistemas incrementa, el riesgo de la aparición de daños y fallas también incrementa. Al mismo tiempo, la detección de dichas fallas y defectos se torna más compleja. En años recientes, la industria aeroespacial ha realizado grandes esfuerzos para integrar los sensores dentro de las estructuras, además de desarrollar algoritmos que permitan determinar la integridad estructural en tiempo real. Esta filosofía ha sido llamada “Structural Health Monitoring” (o “Monitorización de Salud Estructural” en español) y este tipo de estructuras han recibido el nombre de “Smart Structures” (o “Estructuras Inteligentes” en español). Este nuevo tipo de estructuras integran materiales, sensores, actuadores y algoritmos para detectar, cuantificar y localizar daños dentro de ellas mismas. Una novedosa metodología para detección de daños en estructuras se propone en este trabajo. La metodología está basada en mediciones de deformación y consiste en desarrollar técnicas de reconocimiento de patrones en el campo de deformaciones. Estas últimas, basadas en PCA (Análisis de Componentes Principales) y otras técnicas de reducción dimensional. Se propone el uso de Redes de difracción de Bragg y medidas distribuidas como sensores de deformación. La metodología se validó mediante pruebas a escala de laboratorio y pruebas a escala real con estructuras complejas. Los efectos de las condiciones de carga variables fueron estudiados y diversos experimentos fueron realizados para condiciones de carga estáticas y dinámicas, demostrando que la metodología es robusta ante condiciones de carga desconocidas. ABSTRACT In many engineering fields, the integrity and reliability of the structures are extremely important aspects. They are controlled by the adequate knowledge of existing damages. Typically, achieving the level of knowledge necessary to characterize the structural integrity involves the usage of nondestructive testing techniques. These are often expensive and time consuming. Nowadays, many industries look to increase the reliability of the structures used. By using leading edge techniques it is possible to monitoring these structures and in some cases, detect incipient damage that could trigger catastrophic failures. Unfortunately, as the complexity of the structures, components and systems increases, the risk of damages and failures also increases. At the same time, the detection of such failures and defects becomes more difficult. In recent years, the aerospace industry has done great efforts to integrate the sensors within the structures and, to develop algorithms for determining the structural integrity in real time. The ‘philosophy’ has being called “Structural Health Monitoring” and these structures have been called “smart structures”. These new types of structures integrate materials, sensors, actuators and algorithms to detect, quantify and locate damage within itself. A novel methodology for damage detection in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (Principal Component Analysis) and other dimensional reduction techniques. The use of fiber Bragg gratings and distributed sensing as strain sensors is proposed. The methodology have been validated by using laboratory scale tests and real scale tests with complex structures. The effects of the variable load conditions were studied and several experiments were performed for static and dynamic load conditions, demonstrating that the methodology is robust under unknown load conditions.
Resumo:
Esta Tesis tiene como objetivo principal el desarrollo de métodos de identificación del daño que sean robustos y fiables, enfocados a sistemas estructurales experimentales, fundamentalmente a las estructuras de hormigón armado reforzadas externamente con bandas fibras de polímeros reforzados (FRP). El modo de fallo de este tipo de sistema estructural es crítico, pues generalmente es debido a un despegue repentino y frágil de la banda del refuerzo FRP originado en grietas intermedias causadas por la flexión. La detección de este despegue en su fase inicial es fundamental para prevenir fallos futuros, que pueden ser catastróficos. Inicialmente, se lleva a cabo una revisión del método de la Impedancia Electro-Mecánica (EMI), de cara a exponer sus capacidades para la detección de daño. Una vez la tecnología apropiada es seleccionada, lo que incluye un analizador de impedancias así como novedosos sensores PZT para monitorización inteligente, se ha diseñado un procedimiento automático basado en los registros de impedancias de distintas estructuras de laboratorio. Basándonos en el hecho de que las mediciones de impedancias son posibles gracias a una colocación adecuada de una red de sensores PZT, la estimación de la presencia de daño se realiza analizando los resultados de distintos indicadores de daño obtenidos de la literatura. Para que este proceso sea automático y que no sean necesarios conocimientos previos sobre el método EMI para realizar un experimento, se ha diseñado e implementado un Interfaz Gráfico de Usuario, transformando la medición de impedancias en un proceso fácil e intuitivo. Se evalúa entonces el daño a través de los correspondientes índices de daño, intentando estimar no sólo su severidad, sino también su localización aproximada. El desarrollo de estos experimentos en cualquier estructura genera grandes cantidades de datos que han de ser procesados, y algunas veces los índices de daño no son suficientes para una evaluación completa de la integridad de una estructura. En la mayoría de los casos se pueden encontrar patrones de daño en los datos, pero no se tiene información a priori del estado de la estructura. En este punto, se ha hecho una importante investigación en técnicas de reconocimiento de patrones particularmente en aprendizaje no supervisado, encontrando aplicaciones interesantes en el campo de la medicina. De ahí surge una idea creativa e innovadora: detectar y seguir la evolución del daño en distintas estructuras como si se tratase de un cáncer propagándose por el cuerpo humano. En ese sentido, las lecturas de impedancias se emplean como información intrínseca de la salud de la propia estructura, de forma que se pueden aplicar las mismas técnicas que las empleadas en la investigación del cáncer. En este caso, se ha aplicado un algoritmo de clasificación jerárquica dado que ilustra además la clasificación de los datos de forma gráfica, incluyendo información cualitativa y cuantitativa sobre el daño. Se ha investigado la efectividad de este procedimiento a través de tres estructuras de laboratorio, como son una viga de aluminio, una unión atornillada de aluminio y un bloque de hormigón reforzado con FRP. La primera ayuda a mostrar la efectividad del método en sencillos escenarios de daño simple y múltiple, de forma que las conclusiones extraídas se aplican sobre los otros dos, diseñados para simular condiciones de despegue en distintas estructuras. Demostrada la efectividad del método de clasificación jerárquica de lecturas de impedancias, se aplica el procedimiento sobre las estructuras de hormigón armado reforzadas con bandas de FRP objeto de esta tesis, detectando y clasificando cada estado de daño. Finalmente, y como alternativa al anterior procedimiento, se propone un método para la monitorización continua de la interfase FRP-Hormigón, a través de una red de sensores FBG permanentemente instalados en dicha interfase. De esta forma, se obtienen medidas de deformación de la interfase en condiciones de carga continua, para ser implementadas en un modelo de optimización multiobjetivo, cuya solución se haya por medio de una expansión multiobjetivo del método Particle Swarm Optimization (PSO). La fiabilidad de este último método de detección se investiga a través de sendos ejemplos tanto numéricos como experimentales. ABSTRACT This thesis aims to develop robust and reliable damage identification methods focused on experimental structural systems, in particular Reinforced Concrete (RC) structures externally strengthened with Fiber Reinforced Polymers (FRP) strips. The failure mode of this type of structural system is critical, since it is usually due to sudden and brittle debonding of the FRP reinforcement originating from intermediate flexural cracks. Detection of the debonding in its initial stage is essential thus to prevent future failure, which might be catastrophic. Initially, a revision of the Electro-Mechanical Impedance (EMI) method is carried out, in order to expose its capabilities for local damage detection. Once the appropriate technology is selected, which includes impedance analyzer as well as novel PZT sensors for smart monitoring, an automated procedure has been design based on the impedance signatures of several lab-scale structures. On the basis that capturing impedance measurements is possible thanks to an adequately deployed PZT sensor network, the estimation of damage presence is done by analyzing the results of different damage indices obtained from the literature. In order to make this process automatic so that it is not necessary a priori knowledge of the EMI method to carry out an experimental test, a Graphical User Interface has been designed, turning the impedance measurements into an easy and intuitive procedure. Damage is then assessed through the analysis of the corresponding damage indices, trying to estimate not only the damage severity, but also its approximate location. The development of these tests on any kind of structure generates large amounts of data to be processed, and sometimes the information provided by damage indices is not enough to achieve a complete analysis of the structural health condition. In most of the cases, some damage patterns can be found in the data, but none a priori knowledge of the health condition is given for any structure. At this point, an important research on pattern recognition techniques has been carried out, particularly on unsupervised learning techniques, finding interesting applications in the medicine field. From this investigation, a creative and innovative idea arose: to detect and track the evolution of damage in different structures, as if it were a cancer propagating through a human body. In that sense, the impedance signatures are used to give intrinsic information of the health condition of the structure, so that the same clustering algorithms applied in the cancer research can be applied to the problem addressed in this dissertation. Hierarchical clustering is then applied since it also provides a graphical display of the clustered data, including quantitative and qualitative information about damage. The performance of this approach is firstly investigated using three lab-scale structures, such as a simple aluminium beam, a bolt-jointed aluminium beam and an FRP-strengthened concrete specimen. The first one shows the performance of the method on simple single and multiple damage scenarios, so that the first conclusions can be extracted and applied to the other two experimental tests, which are designed to simulate a debonding condition on different structures. Once the performance of the impedance-based hierarchical clustering method is proven to be successful, it is then applied to the structural system studied in this dissertation, the RC structures externally strengthened with FRP strips, where the debonding failure in the interface between the FRP and the concrete is successfully detected and classified, proving thus the feasibility of this method. Finally, as an alternative to the previous approach, a continuous monitoring procedure of the FRP-Concrete interface is proposed, based on an FBGsensors Network permanently deployed within that interface. In this way, strain measurements can be obtained under controlled loading conditions, and then they are used in order to implement a multi-objective model updating method solved by a multi-objective expansion of the Particle Swarm Optimization (PSO) method. The feasibility of this last proposal is investigated and successfully proven on both numerical and experimental RC beams strengthened with FRP.
Resumo:
El control del estado en el que se encuentran las estructuras ha experimentado un gran auge desde hace varias décadas, debido a que los costes de rehabilitación de estructuras tales como los oleoductos, los puentes, los edificios y otras más son muy elevados. En las últimas dos décadas, se han desarrollado una gran cantidad de métodos que permiten identificar el estado real de una estructura, basándose en modelos físicos y datos de ensayos. El ensayo modal es el más común; mediante el análisis modal experimental de una estructura se pueden determinar parámetros como la frecuencia, los modos de vibración y la amortiguación y también la función de respuesta en frecuencia de la estructura. Mediante estos parámetros se pueden implementar diferentes indicadores de daño. Sin embargo, para estructuras complejas y grandes, la implementación de metodologías basadas en la función de respuesta en frecuencia requeriría realizar hipótesis sobre la fuerza utilizada para excitar la estructura. Dado que el análisis modal operacional utiliza solamente las señales de respuesta del sistema para extraer los parámetros dinámicos estructurales y, por tanto, para evaluar el estado de una estructura, el uso de la transmisibilidad sería posible. En este sentido, dentro del análisis modal operacional, la transmisibilidad ha concentrado mucha atención en el mundo científico en la última década. Aunque se han publicado muchos trabajos sobre el tema, en esta Tesis se proponen diferentes técnicas para evaluar el estado de una estructura basándose exclusivamente en la transmisibilidad. En primer lugar, se propone un indicador de daño basado en un nuevo parámetro, la coherencia de transmisibilidad; El indicador se ha valido mediante resultados numéricos y experimentales obtenidos sobre un pórtico de tres pisos. En segundo lugar, la distancia de Mahalanobis se aplica sobre la transmisibilidad como procedimiento para detectar variaciones estructurales provocadas por el daño. Este método se ha validado con éxito sobre una viga libre-libre ensayada experimentalmente. En tercer lugar, se ha implementado una red neuronal basada en medidas de transmisibilidad como metodología de predicción de daño sobre una viga simulada numéricamente. ABSTRACT Structural health monitoring has experienced a huge development from several decades ago since the cost of rehabilitation of structures such as oil pipes, bridges and tall buildings is very high. In the last two decades, a lot of methods able to identify the real stage of a structure have been developed basing on both models and experimental data. Modal testing is the most common; by carrying out the experimental modal analysis of a structure, some parameters, such as frequency, mode shapes and damping, as well as the frequency response function of the structure can be obtained. From these parameters, different damage indicators have been proposed. However, for complex and large structures, any frequency domain approach that relies on frequency response function estimation would be of difficult application since an assumption of the input excitations to the system should be carried out. Operational modal analysis uses only output signals to extract the structural dynamic parameters and, therefore, to identify the structural stage. In this sense, within operational modal analysis, transmissibility has attracted a lot of attention in the scientific field in the last decade. In this work new damage detection approaches based on transmissibility are developed. Firstly, a new theory of transmissibility coherence is developed and it is tested with a three-floor-structure both in simulation and in experimental data analysis; secondly, Mahalanobis distance is taken into use with the transmissibility, and a free-free beam is used to test the approach performance; thirdly, neural networks are used in transmissibility for structural health monitoring; a simulated beam is used to validate the proposed method.
Resumo:
El control del estado en el que se encuentran las estructuras ha experimentado un gran auge desde hace varias décadas, debido a que los costes de rehabilitación de estructuras tales como los oleoductos, los puentes, los edificios y otras más son muy elevados. En las últimas dos décadas, se han desarrollado una gran cantidad de métodos que permiten identificar el estado real de una estructura, basándose en modelos físicos y datos de ensayos. El ensayo modal es el más común; mediante el análisis modal experimental de una estructura se pueden determinar parámetros como la frecuencia, los modos de vibración y la amortiguación y también la función de respuesta en frecuencia de la estructura. Mediante estos parámetros se pueden implementar diferentes indicadores de daño. Sin embargo, para estructuras complejas y grandes, la implementación de metodologías basadas en la función de respuesta en frecuencia requeriría realizar hipótesis sobre la fuerza utilizada para excitar la estructura. Dado que el análisis modal operacional utiliza solamente las señales de respuesta del sistema para extraer los parámetros dinámicos estructurales y, por tanto, para evaluar el estado de una estructura, el uso de la transmisibilidad sería posible. En este sentido, dentro del análisis modal operacional, la transmisibilidad ha concentrado mucha atención en el mundo científico en la última década. Aunque se han publicado muchos trabajos sobre el tema, en esta Tesis se proponen diferentes técnicas para evaluar el estado de una estructura basándose exclusivamente en la transmisibilidad. En primer lugar, se propone un indicador de daño basado en un nuevo parámetro, la coherencia de transmisibilidad; El indicador se ha valido mediante resultados numéricos y experimentales obtenidos sobre un pórtico de tres pisos. En segundo lugar, la distancia de Mahalanobis se aplica sobre la transmisibilidad como procedimiento para detectar variaciones estructurales provocadas por el daño. Este método se ha validado con éxito sobre una viga libre-libre ensayada experimentalmente. En tercer lugar, se ha implementado una red neuronal basada en medidas de transmisibilidad como metodología de predicción de daño sobre una viga simulada numéricamente. ABSTRACT Structural health monitoring has experienced a huge development from several decades ago since the cost of rehabilitation of structures such as oil pipes, bridges and tall buildings is very high. In the last two decades, a lot of methods able to identify the real stage of a structure have been developed basing on both models and experimental data. Modal testing is the most common; by carrying out the experimental modal analysis of a structure, some parameters, such as frequency, mode shapes and damping, as well as the frequency response function of the structure can be obtained. From these parameters, different damage indicators have been proposed. However, for complex and large structures, any frequency domain approach that relies on frequency response function estimation would be of difficult application since an assumption of the input excitations to the system should be carried out. Operational modal analysis uses only output signals to extract the structural dynamic parameters and, therefore, to identify the structural stage. In this sense, within operational modal analysis, transmissibility has attracted a lot of attention in the scientific field in the last decade. In this work new damage detection approaches based on transmissibility are developed. Firstly, a new theory of transmissibility coherence is developed and it is tested with a three-floor-structure both in simulation and in experimental data analysis; secondly, Mahalanobis distance is taken into use with the transmissibility, and a free-free beam is used to test the approach performance; thirdly, neural networks are used in transmissibility for structural health monitoring; a simulated beam is used to validate the proposed method.
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. ^ Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. ^ The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. ^ The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. ^ The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles. ^
Resumo:
Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
The effect of unevenness in a bridge deck for the purpose of Structural Health Monitoring (SHM) under operational conditions is studied in this paper. The moving vehicle is modelled as a single degree of freedom system traversing the damaged beam at a constant speed. The bridge is modelled as an Euler-Bernoulli beam with a breathing crack, simply supported at both ends. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness in the bridge deck considered is modelled using road classification according to ISO 8606:1995(E). Numerical simulations are conducted considering the effects of changing road surface classes from class A - very good to class E - very poor. Cumulant based statistical parameters, based on a new algorithm are computed on stochastic responses of the damaged beam due to passages of the load in order to calibrate the damage. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. The findings of this paper are important for establishing the expectations from different types of road roughness on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring.
Resumo:
The effects of vehicle speed for Structural Health Monitoring (SHM) of bridges under operational conditions are studied in this paper. The moving vehicle is modelled as a single degree oscillator traversing a damaged beam at a constant speed. The bridge is modelled as simply supported Euler-Bernoulli beam with a breathing crack. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness of the bridge deck is modelled using road classification according to ISO 8606:1995(E). The stochastic description of the unevenness of the road surface is used as an aid to monitor the health of the structure in its operational condition. Numerical simulations are conducted considering the effects of changing vehicle speed with regards to cumulant based statistical damage detection parameters. The detection and calibration of damage at different levels is based on an algorithm dependent on responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. Sensitivity of calibration values is studied. The findings of this paper are important for establishing the expectations from different vehicle speeds on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring. The identification of bunching of these speed ranges provides guidelines for using the methodology developed in the paper.
Resumo:
There have been over 3000 bridge weigh-in-motion (B-WIM) installations in 25 countries worldwide, this has led vast improvements in post processing of B-WIM systems since its introduction in the 1970’s. This paper introduces a new low-power B-WIM system using fibre optic sensors (FOS). The system consisted of a series of FOS which were attached to the soffit of an existing integral bridge with a single span of 19m. The site selection criteria and full installation process has been detailed in the paper. A method of calibration was adopted using live traffic at the bridge site and based on this calibration the accuracy of the system was determined.