989 resultados para Stress corrosion cracking


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rock bolts have failed by Stress Corrosion Cracking (SCC). This paper presents a detailed examination of the fracture surfaces in an attempt to understand the SCC fracture mechanism. The SCC fracture surfaces, studied using Scanning Electron Microscopy (SEM), contained the following different surfaces: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS) and Micro Void Coalescence (MVC). TTS was characterised by a ridge pattern independent of the pearlite microstructure, but having a spacing only slightly coarser than the pearlite spacing. CIS was characterised as porous irregular corrugated surfaces joined by rough slopes. MVC found in the studied rock bolts was different to that in samples failed in a pure ductile manner. The MVC observed in rock bolts was more flat and regular than the pure MVC, being attributed to hydrogen embrittling the ductile material near the crack tip. The interface between the different fracture surfaces revealed no evidence of a third mechanism involved in the transition between fracture mechanisms. The microstructure had no effect on the diffusion of hydrogen nor on the fracture mechanisms. The following SCC mechanism is consistent with the fracture surfaces. Hydrogen diffused into the material, reaching a critical concentration level. The thus embrittled material allowed a crack to propagate through the brittle region. The crack was arrested once it propagated outside the brittle region. Once the new crack was formed, corrosion reactions started producing hydrogen that diffused into the material once again. (C) 2003 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea-mud region. The sulfate reducing bacteria (SRB) in the sea-mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea-mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea-mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea-mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea-mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of rare earth organic compounds pioneered by our group have been shown to provide a viable alternative to theuse of chromates as corrosion inhibitors for some steel and aluminium applications. For example we have shown thatthe lanthanum 4-hydroxy cinnamate offers excellent corrosion mitigation for mild steel in aqueous environments whilerare earth diphenyl phosphates offer the best protection in the case of aluminium alloys. In both cases the protectionappears to be related to the formation of a nanometre thick interphase occurring on the surface that reduces theelectrochemical processes leading to metal loss or pitting. Very recent work has indicated that we may even be able toaddress the challenging issue of stress corrosion cracking of high strength steels. Furthermore, filiform corrosion can besuppressed when selected rare earth inhibitor compounds are added as pigments to a polymer coating. There is little doubtfrom the work thus far that a synergy exists between the rare earth and organic inhibitor components in these novelcompounds. This paper reviews some of the published research conducted by the senior author and colleagues over the past10 years in this developing field of green corrosion inhibitors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.©2014 Institute of Materials, Minerals and Mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mitigation of external corrosion of energy pipelines by a combination of barrier coatings and Cathodic Protection (CP) is not always effective. Even when design specifications are properly met, the shielding of cathodic protection current from reaching steel surface by disbonded barrier coatings, often referred to as cathodic shielding, may lead to severe corrosion problems such as deep pitting, high and near neutral pH Stress Corrosion Cracking (SCC) and Microbiologically Induced Corrosion (MIC). Unfortunately, current indirect assessment methods used in the pipeline industry have serious difficulties in detecting such corrosion problems. This paper provides a brief review of current techniques and their limitations when being applied under complex buried pipeline environmental conditions. The main purpose is to identify potential methods that could be utilised in the design of new monitoring probes specific for the monitoring of cathodic shielding and corrosion of disbonded coatings in the pipeline industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the addition of Cr and Nb on the microstructure and the electrochemical corrosion of the weldable, high-strength and stress corrosion cracking (SCC) resistant Al-5%Zn-1.67%Mg-0.23%Cu alloy (H) has been studied. Combined additions of the alloying elements, J (with Nb), L (with Cr) and O (with Cr and Nb) and different heat treatments, ST (cold-rolled), A (annealed), F (quenched), B (quenched and aged) and C (quenched in two steps and aged), to obtain different microstructures and hardness have been performed. To correlate the electrochemical corrosion with the microstructure of the specimens, corrosion potential (E(cor)) measurements in different chloride solutions were performed and optical microscopy, SEM, TEM and EDX were applied. In chloride solutions containing dissolved O-2 or H2O2, the present alloys were polarized up to the pitting attack. It was shown that the E(cor) measurements were very sensitive to the alloy composition and heat treatment, increasing in the order H < J < L < O < Al (for a given heat treatment) and F < A approximate to ST < B < C (for a given alloy). The MgZn2 precipitates of the annealed (A) and cold-rolled (ST) specimens were dissolved in chloride solutions containing oxidizing agents and pitting attack was shown to develop in the cavities where the precipitates were present. In the specimens B and C, the compositions of the precipitate free zones was found to be equal to that of the matrix solid solution and preferential intergranular attack was not evident, this being in agreement with their SCC resistance. The addition of Cr and Nb increased the pitting corrosion resistance. The effects of Cr and Nb were additive, that of Cr being predominant, either, in the E(cor) shift or in the increase in the pitting corrosion resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses the fracture propagation and stress corrosion behaviour of laser hybrid welds achieved between low carbon steel and stainless steel thin sheets. The crack propagation within these overmatched in strength welds was investigated by crack tip opening displacement (CTOD) on CT specimens notched transverse to the weld. A Digital Image Correlation System was used to qualify and estimate the initial crack length obtained by fatigue. The results are associated with the fractographic examinations of various regions of laser hybrid joints. Stress corrosion behaviour of the joint is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent search for new sources of hydrocarbons has led to production from very severe environments which can contain considerable amounts of carbon dioxide, hydrogen sulphide, and chloride ions, combined with temperatures which can exceed 100°C. Oil and gas production from such wells requires highly corrosion-resistant materials. The traditional solution of using carbon steel with additional protection is generally inadequate in these very-aggressive environments. Duplex stainless steels (DSS) are attractive candidates because of their high strength, good general corrosion resistance, excellent resistance to chloride-induced stress corrosion cracking, and good weldability. Although duplex stainless steels have a very good reputation in both subsea and topsides pipework, it is recognized that the tolerance of these materials to variations in microstructure and chemical composition are still not fully understood. The object of this paper is to review the corrosion behaviour of duplex stainless steels in the petrochemical industry, with particular emphasis on microstructures and the effect of changes in chemical composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

海洋设施长期处于恶劣的腐蚀环境中,如不加以防护,一旦发生应力腐蚀开裂(SCC),损失就会极为惨重。海底泥土区环境十分重要,因为管线和平台桩腿等都埋在海底泥中。海底泥中硫酸盐还原菌(SRB)十分活跃,而且为了防止腐蚀,海泥中的设施无一例外地采取了阴极保护,相当于设施处在长期稳定的充氢状态。因此非常有必要研究海泥中的活性SRB和极化电位对海洋结构用钢在海泥中的氢渗透行为和SCC敏感性造成的影响,弄清SCC发生和发展的过程以便采取相应的措施减缓或防止SCC。 本文通过慢应变速率拉伸实验(SSRT)、电化学阻抗谱(EIS)技术、动电位扫描极化曲线测定实验和氢渗透实验等研究了海泥中SRB和极化电位对16Mn钢和管线钢X56(API X56)的SCC敏感性造成的影响。 从渤海海泥中富集得到SRB菌种,并做出了SRB在海泥中的生长曲线;在荧光显微镜下观察SRB为弧状,可以归为脱硫弧菌属,为革兰氏阴性菌;海泥中活性SRB数量与硫电位等主要腐蚀环境因子具有一定的对应关系。 SSRT结果表明,施加阴极极化电位可以使试样断裂脆性特征明显,SCC敏感性增大;海泥中活性SRB浓度越高,断裂脆性特征越明显,SCC敏感性越大。在含SRB海泥中或阴极极化电位条件下,两种钢都容易发生SCC,氢脆(HIC)起主要作用。 随着浸泡天数的增加,试样在灭菌海泥中的Rp一直增大;在含SRB海泥中Rp先增大,又变小,并呈现出显著的Warburg阻抗特征;在灭菌海泥中,两种试样在阳极电位范围内无SCC敏感区,而在阴极电位范围内有明显的SCC敏感区;在含SRB海泥中,在阳极电位范围和阴极电位范围内均有SCC敏感区;SRB代谢产物既有阳极去极化作用,又有阴极去极化作用,能使腐蚀电流密度增加。 活性SRB的存在能够促进试样在海泥中的氢渗透;在实海工程应用中,两种钢在含SRB海泥中的氢渗透电流密度大约是在不含SRB海泥中的3~4倍。阴极极化电位能够促进试样在灭菌海泥中的氢渗透。在含SRB海泥中对试样施加阴极极化电位,氢渗透电流密度大于不加阴极极化电位时的氢渗透电流密度,也大于在不含SRB的海泥中的氢渗透电流密度。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In corrosion medium, metals can deform under tensile stress and form a new active surface with the anodic dissolution of the metals being accelerated. At the same time, the anodic dissolution may accelerate the deformation of the metals. The synergy can lead to crack nucleation and development and shorten the service life of the component. Austenitic stainless steel in acidic chloride solution was in active dissolution condition when stress corrosion cracking (SCC) occurred. It is reasonable to assume that the anodic dissolution play an important role, so it's necessary to study the synergy between anodic dissolution and deformation of austenitic stainless steels. The synergy between deformation and anodic dissolution of AISI 321 austenitic stainless steel in an acidic chloride solution was studied in this paper. The corrosion rate of the steel increased remarkably due to the deformation-accelerated anodic and cathodic processes. The creep rate was increased while the yield strength was reduced by anodic dissolution. The analysis by thermal activation theory of deformation showed a linear relationship between the logarithm of creep rate and the logarithm of anodic cur-rent. Besides, the reciprocal of yield strength was also linearly dependent on the logarithm of anodic current. The theoretical deductions were in good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了管线钢硫化物应力腐蚀裂开危险性智能探测仪的设计、结构和检测结果。该检测仪具有数据采集、存储处理、逻辑判断和现场制表打印输出评价/判断等功能,对及时发现和消除含硫油气管线的隐患,以防止恶性破坏事故的发生有重要意义。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A preliminary study showed that the inhibitor lanthanum 4-hydroxy cinnamate ((La4OHcin)3) at a concentration of 400 ppm prevented the hydrogen embrittlement (HE) of SAE 4340 steel tensile specimens when tested under slow strain rate conditions in a 0.01M NaCl. In the presence of the inhibitor, a complex film formed on the surface of specimens during the slow strain rate test (SSRT), and no corrosion pits were detected. Electrochemical polarization studies indicated that the La(4OHcin)3 acted as an anodic inhibitor in the NaCl solution. This article also discusses the mechanism of HE inhibition by La(4OHcin)3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudou-se o comportamento do aço inoxidável ABNT 304 à corrosão-sob-tensão (C.S.T.) em soluções aquosas com 0,1%, 3,5% e 20% de NaCl, na temperatura de 103°C, através de ensaios de carga constante. Com auxílio das técnicas e conceitos de Mecânica de Fratura Linear Elástica e das análises eletroquímicas procurou-se encontrar as condições em que ocorre C.S.T. no sistema aço inoxidável austenítico/solução aquosa de NaCl a 103°C. Utilizou-se o corpo-de-prova do tipo dupla viga em balanço (T-notch double cantilever beam: TN-DCB), com intuito de observar a influência do fator de intensidade de tensão, concentração da solução e potencial eletroquímico. Estimou-se o valor do fator de intensidade de tensão limite (KICST) e a velocidade de propagação das trincas; também foram analisadas outras importantes características em termos mecanísticos. Definiu-se faixas de potenciais e valores de intensidade de tensão a partir dos quais ocorre o surgimento de trincas por C.S.T.. Fêz-se análises metalográficas dos corpos-de-prova onde se pode constatar trincas transgranulares bem típicas do fenômeno de C.S.T.. Foram feitos alguns testes em solução aquosa saturada de MgCl2, em ebulição, para se comparar as diferentes soluções quanto ao fenômeno de C.S.T.. Alterou-se as dimensões do corpo-de-prova para avaliar a orientação da propagação das trincas por C.S.T..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of electrochemical potentiokinetic methods as applied to the testing of metals and alloys is followed from its early phases up to its latest advances relating to intergranular corrosion, SCC and pitting corrosion tests of stainless steels and special alloys and to the examination of their structure and properties. In assessing the susceptibility to intergranular and pitting corrosion by potentiokinetic polarization tests, the polarization curves which apply to the bulk of the alloy grains (the matrix) must be distinguished from those pertaining to grain boundaries. Cyclic polarization measurements such as the electrochemical potentiokinetic reactivation (EPR) test make it possible to derive the alloy's susceptibility to intergranular, pitting and crevice corrosion from characteristic potentials and other quantities determined in the 'double loop' test. EPR is rapid and responds to the combined effects of a number of factors that influence the properties of materials. The electrochemical p otentiokinetic tests are sensitive enough to detect structural changes in heat treated materials ranging far beyond the stainless steels alone, and can be used for non-destructive testing aimed at elucidating the properties and behavior of materials. © 2001 Elsevier Science Ltd. All rights reserved.