832 resultados para Strength And Endurance Training
Resumo:
Serotonin is a neurotransmitter that modulates several functions, such as food intake, energy expenditure, motor activity, mood and sleep. Acute exhaustive endurance exercise increases the synthesis, concentration and metabolism of serotonin in the brain. This phenomenon could be responsible for central fatigue after prolonged and exhaustive exercise. However, the effect of chronic exhaustive training on serotonin is not known. The present study was conducted to examine the effect of exhaustive endurance training on performance and serotonin concentrations in the hypothalamus of trained rats. Rats were divided into three groups: sedentary rats (SED), moderately trained rats (MOD) and exhaustively trained rats (EXT), with an increase of 200% in the load carried during the final week of training. Hypothalamic serotonin concentrations were similar between the SED and MOD groups, but were higher in the EXT group (P < 0.05). Performance was lower in the EXT group compared with the MOD group (P < 0.05). Thus, the present study demonstrates that exhaustive training increases serotonin concentrations in the hypothalamus, together with decreased endurance performance after inadequate recovery time. However, the mechanism underlying these changes remains unknown.
Resumo:
Endurance exercise is known to enhance peripheral insulin sensitivity and reduce insulin secretion. However, it is unknown whether the latter effect is due to the reduction in plasma substrate availability or alterations in beta-cell secretory machinery. Here, we tested the hypothesis that endurance exercise reduces insulin secretion by altering the intracellular energy-sensitive AMP-activated kinase (AMPK) signaling pathway. Male Wistar rats were submitted to endurance protocol training one, three, or five times per week, over 8 weeks. After that, pancreatic islets were isolated, and glucose-induced insulin secretion (GIIS), glucose transporter 2 (GLUT2) protein content, total and phosphorylated calmodulin kinase kinase (CaMKII), and AMPK levels as well as peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1 alpha) and uncoupling protein 2 (UCP2) content were measured. After 8 weeks, chronic endurance exercise reduced GIIS in a dose-response manner proportionally to weekly exercise frequency. Contrariwise, increases in GLUT2 protein content, CaMKII and AMPK phosphorylation levels were observed. These alterations were accompanied by an increase in UCP2 content, probably mediated by an enhancement in PGC-1 alpha protein expression. In conclusion, chronic endurance exercise induces adaptations in beta-cells leading to a reduction in GIIS, probably by activating the AMPK signaling pathway. Journal of Endocrinology (2011) 208, 257-264
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Endurance training increases insulin-stimulated muscle glucose transport and leads to improved metabolic control in diabetic patients.Objective: To analyze the effects of endurance training on the early steps of insulin action in muscle of rats. Design: Male rats submitted to daily swimming for 6 weeks were compared with sedentary controls. At the end of the training period, anesthetized animals received an intravenous (i.v.) injection of insulin and had a fragment of their gastrocnemius muscle excised for the experiments.Methods: Associations between insulin receptor, insulin receptor substrates (IRS)-1 and -2 and phosphatidylinositol 3-kinase (PI3-kinase) were analyzed by immunoprecipitation and immunoblotting. Akt-1 serine phosphorylation and specific protein quantification were detected by immunoblotting of total extracts, and IRS-1/IRS-2-associated PI3-kinase activity were determined by thin-layer chromatography.Results: Insulin-induced phosphorylation of IRS-1 and IRS-2 increased respectively by 1.8-fold (P < 0.05) and 1.5-fold (P < 0.05), whereas their association with PI3-kinase increased by 2.3-fold (P < 0.05) and 1.9-fold (P < 0.05) in trained rats as compared with sedentary controls, respectively. The activity of PI3-kinase associated with IRS-1 and IRS-2 increased by 1.8-fold (P < 0.05) and 1.7-fold (P < 0.05) respectively, in trained rats as compared with their untrained counterparts. Serine phosphorylation of Akt-1/PKB increased 1.7-fold (P < 0.05) in trained rats in response to insulin. These findings were accompanied by increased responsiveness to insulin as demonstrated by a reduced area under the curve for insulin during an i.v. glucose tolerance test, by increased glucose disappearance rate during an insulin tolerance test, and by increased expression of glucose transporter-4.Conclusions: the increased responsiveness to insulin induced by chronic exercise in rat skeletal muscle may result, at least in part, from the modulation of the insulin signaling pathway at different molecular levels.
Resumo:
The main purpose of this study was to analyze the effects of exercise mode, training status and specificity on the oxygen uptake ((V)over dot O-2) kinetics during maximal exercise performed in treadmill running and cycle ergometry. Seven runners (R), nine cyclists (C), nine triathletes (T) and eleven untrained subjects (U), performed the following tests on different days on a motorized treadmill and on a cycle ergometer: (1) incremental tests in order to determine the maximal oxygen uptake ((V)over dot O-2max) and the intensity associated with the achievement of (V)over dot O-2max (I(V)over dot O-2max); and (2) constant work-rate running and cycling exercises to exhaustion at I(V)over dot O-2max to determine the effective time constant of the (V)over dot O-2 response (tau(V)over dot O-2). Values for (V)over dotO(2max) obtained on the treadmill and cycle ergometer [R=68.8 (6.3) and 62.0 (5.0); C=60.5 (8.0) and 67.6 (7.6); T=64.5 (4.8) and 61.0 (4.1); U=43.5 (7.0) and 36.7 (5.6); respectively] were higher for the group with specific training in the modality. The U group showed the lowest values for VO2max, regardless of exercise mode. Differences in tau(V)over dot O-2 (seconds) were found only for the U group in relation to the trained groups [R=31.6 (10.5) and 40.9 (13.6); C=28.5 (5.8) and 32.7 (5.7); T=32.5 (5.6) and 40.7 (7.5); U=52.7 (8.5) and 62.2 (15.3); for the treadmill and cycle ergometer, respectively]; no effects of exercise mode were found in any of the groups. It is concluded that tauVO(2) during the exercise performed at I(V)over dot O-2max is dependent on the training status, but not dependent on the exercise mode and specificity of training. Moreover, the transfer of the training effects on tau(V)over dotO(2) between both exercise modes may be higher compared with (V)over dot O-2max.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Calegari VC, Abrantes JL, Silveira LR, Paula FM, Costa JM Jr, Rafacho A, Velloso LA, Carneiro EM, Bosqueiro JR, Boschero AC, Zoppi CC. Endurance training stimulates growth and survival pathways and the redox balance in rat pancreatic islets. J Appl Physiol 112: 711-718, 2012. First published December 15, 2011; doi:10.1152/japplphysiol.00318.2011.-Endurance training has been shown to increase pancreatic beta-cell function and mass. However, whether exercise modulates beta-cell growth and survival pathways signaling is not completely understood. This study investigated the effects of exercise on growth and apoptotic markers levels in rat pancreatic islets. Male Wistar rats were randomly assigned to 8-wk endurance training or to a sedentary control group. After that, pancreatic islets were isolated; gene expression and the total content and phosphorylation of several proteins related to growth and apoptotic pathways as well as the main antioxidant enzymes were determined by real-time polymerase chain reaction and Western blot analysis, respectively. Reactive oxygen species (ROS) production was measured by fluorescence. Endurance training increased the time to reach fatigue by 50%. Endurance training resulted in increased protein phosphorylation content of AKT (75%), AKT substrate (AS160; 100%), mTOR (60%), p70s6k (90%), and ERK1/2 (50%), compared with islets from control group. Catalase protein content was 50% higher, whereas ROS production was 49 and 77% lower in islets from trained rats under basal and stimulating glucose conditions, respectively. Bcl-2 mRNA and protein levels increased by 46 and 100%, respectively. Bax and cleaved caspase-3 protein contents were reduced by 25 and 50% in islets from trained rats, respectively. In conclusion, these results demonstrate that endurance training favors the beta-cell growth and survival by activating AKT and ERK1/2 pathways, enhancing antioxidant capacity, and reducing ROS production and apoptotic proteins content.
Resumo:
Abstract Background a decline in immune and endocrine function occurs with aging. The main purpose of this study was to investigate the impact of long-term endurance training on the immune and endocrine system of elderly men. The possible interaction between these systems was also analysed. Results elderly runners showed a significantly higher T cell proliferative response and IL-2 production than sedentary elderly controls. IL-2 production was similar to that in young adults. Their serum IL-6 levels were significantly lower than their sedentary peers. They also showed significantly lower IL-3 production in comparison to sedentary elderly subjects but similar to the youngs. Anabolic hormone levels did not differ between elderly groups and no clear correlation was found between hormones and cytokine levels. Conclusion highly conditioned elderly men seem to have relatively better preserved immune system than the sedentary elderly men. Long-term endurance training has the potential to decelerate the age-related decline in immune function but not the deterioration in endocrine function.
Resumo:
Endurance athletes have an increased risk of developing atrial fibrillation (AF) at 40 to 50 years of age. Signal-averaged P-wave analysis has been used for identifying patients at risk for AF. We evaluated the impact of lifetime training hours on signal-averaged P-wave duration and modifying factors. Nonelite men athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Four hundred ninety-two marathon and nonmarathon runners applied for participation, 70 were randomly selected, and 60 entered the final analysis. Subjects were stratified according to their lifetime training hours (average endurance and strength training hours per week × 52 × training years) in low (<1,500 hours), medium (1,500 to 4,500 hours), and high (>4,500 hours) training groups. Mean age was 42 ± 7 years. From low to high training groups signal-averaged P-wave duration increased from 131 ± 6 to 142 ± 13 ms (p = 0.026), and left atrial volume increased from 24.8 ± 4.6 to 33.1 ± 6.2 ml/m(2) (p = 0.001). Parasympathetic tone expressed as root of the mean squared differences of successive normal-to-normal intervals increased from 34 ± 13 to 47 ± 16 ms (p = 0.002), and premature atrial contractions increased from 6.1 ± 7.4 to 10.8 ± 7.7 per 24 hours (p = 0.026). Left ventricular mass increased from 100.7 ± 9.0 to 117.1 ± 18.2 g/m(2) (p = 0.002). Left ventricular systolic and diastolic function and blood pressure at rest were normal in all athletes and showed no differences among training groups. Four athletes (6.7%) had a history of paroxysmal AF, as did 1 athlete in the medium training group and 3 athletes in the high training group (p = 0.252). In conclusion, in nonelite men athletes lifetime training hours are associated with prolongation of signal-averaged P-wave duration and an increase in left atrial volume. The altered left atrial substrate may facilitate occurrence of AF. Increased vagal tone and atrial ectopy may serve as modifying and triggering factors.
Resumo:
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Resumo:
This study evaluated the effects of 8 weeks of eccentric endurance training (EET) in male subjects (age range 42-66 years) with coronary artery disease (CAD). EET was compared to concentric endurance training (CET) carried out at the same metabolic exercise intensity, three times per week for half an hour. CET ( n=6) was done on a conventional cycle ergometer and EET ( n=6) on a custom-built motor-driven ergometer. During the first 5 weeks of the training program the metabolic load was progressively increased to 60% of peak oxygen uptake in both groups. At this metabolic load, mechanical work rate achieved was 97 (8) W [mean (SE)] for CET and 338 (34) W for EET, respectively. Leg muscle mass was determined by dual-energy X-ray absorptiometry, quadriceps strength with an isokinetic dynamometer and muscle fibre composition of the vastus lateralis muscle with morphometry. The leg muscle mass increased significantly in both groups by some 3%. Strength parameters of knee extensors improved in EET only. Significant changes of +11 (4.9)%, +15 (3.2)% and +9 (2.5)% were reached for peak isometric torque and peak concentric torques at 60 degrees s(-1) and 120 degrees s(-1), respectively. Fibre size increased significantly by 19% in CET only. In conclusion, the present investigation showed that EET is feasible in middle-aged CAD patients and has functional advantages over CET by increasing muscle strength. Muscle mass increased similarly in both groups whereas muscle structural composition was differently affected by the respective training protocols. Potential limitations of this study are the cautiously chosen conditioning protocol and the restricted number of subjects.
Resumo:
Background Left atrium (LA) dilation and P-wave duration are linked to the amount of endurance training and are risk factors for atrial fibrillation (AF). The aim of this study was to evaluate the impact of LA anatomical and electrical remodeling on its conduit and pump function measured by two-dimensional speckle tracking echocardiography (STE). Method Amateur male runners > 30 years were recruited. Study participants (n = 95) were stratified in 3 groups according to lifetime training hours: low (< 1500 h, n = 33), intermediate (1500 to 4500 h, n = 32) and high training group (> 4500 h, n = 30). Results No differences were found, between the groups, in terms of age, blood pressure, and diastolic function. LA maximal volume (30 ± 5, 33 ± 5 vs. 37 ± 6 ml/m2, p < 0.001), and conduit volume index (9 ± 3, 11 ± 3 vs. 12 ± 3 ml/m2, p < 0.001) increased significantly from the low to the high training group, unlike the STE parameters: pump strain − 15.0 ± 2.8, − 14.7 ± 2.7 vs. − 14.9 ± 2.6%, p = 0.927; conduit strain 23.3 ± 3.9, 22.1 ± 5.3 vs. 23.7 ± 5.7%, p = 0.455. Independent predictors of LA strain conduit function were age, maximal early diastolic velocity of the mitral annulus, heart rate and peak early diastolic filling velocity. The signal-averaged P-wave (135 ± 11, 139 ± 10 vs. 148 ± 14 ms, p < 0.001) increased from the low to the high training group. Four episodes of non-sustained AF were recorded in one runner of the high training group. Conclusion The LA anatomical and electrical remodeling does not have a negative impact on atrial mechanical function. Hence, a possible link between these risk factors for AF and its actual, rare occurrence in this athlete population, could not be uncovered in the present study.