784 resultados para Strain Dependence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supramolecular polyurethanes (SPUs) possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics). A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs) for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a high senstivity low cost capacitive strain gage sensor. The theory, design, and sensor construction details are presented. It consists of eight capacitive sensors connected in two full bridges. The capacitive strain gage sensor structure was designed in order to produce high sensitivity and low dependence with temperature. By using a simple signal conditioning circuit constituted by a differential amplifier, a band-pass filter, and a precision rectifier the device can measure forces with resolution of 0.009 N and precision of 98.7%. It is rugged, presents linear response, and good repeatability. It presents sensitivity of 8.7 V/N and fall time of 12 ms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new analytical theory including friction was developed to assess strain limits in punch stretching of anisotropic sheet metals. This new approach takes into consideration the anisotropic behaviour of sheet materials and could explain the mechanical behaviour of a variety of anisotropic sheet materials. The theory explains the sheet metal failure so for the drawing as the stretching region of the forming limit curve, particularly for materials that present the strain-ratio dependence of limit strain ε 1, where dε 1/dρ is not always greater than zero. dε 1/ dρ or dε 1/dε 2 could be equal to or smaller than zero for a range of materials. Therefore, this new theory can explains such experimental observations, besides to assuming that membrane element relations near the pole, for the case of punch stretching are dependent of sheet metal properties as the process history and also suggests that the onset of local necking is controlled by shear. Thus, theoretical results obtained through this new approach are compared with experimental results available in the literature. It is demonstrated the effect of friction on a FLC curve for both regions, drawing and stretching. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low viscosity domains such as localized shear zones exert an important control on the geodynamics of the uppermost mantle. Grain size reduction and subsequent strain localization related to a switch from dislocation to diffusion creep is one mechanism to form low viscosity domains. To sustain strain localization, the grain size of mantle minerals needs to be kept small over geological timescales. One way to keep olivine grain sizes small is by pinning of mobile grain boundaries during grain growth by other minerals (second phases). Detailed microstructural studies based on natural samples from three shear zones formed at different geodynamic settings, allowed the derivation of the olivine grain-size dependence on the second-phase content. The polymineralic olivine grain-size evolution with increasing strain is similar in the three shear zones. If the second phases are to pin the mobile olivine grain boundary the phases need to be well mixed before grain growth. We suggest that melt-rock and metamorphic reactions are crucial for the initial phase mixing in mantle rocks. With ongoing deformation and increasing strain, grain boundary sliding combined with mass transfer processes and nucleation of grains promotes phase mixing resulting in fine-grained polymineralic mixtures that deform by diffusion creep. Strain localization due to the presence of volumetrically minor minerals in polymineralic mantle rocks is only important at high strain deformation (ultramylonites) at low temperatures (<~800°C). At smaller strain and stress conditions and/or higher temperatures other parameters like overall energy available to deform a given rock volume, the inheritance of mechanical anisotropies or the presence of water or melts needs to be considered to explain strain localization in the upper mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the structure of the mixed-anion Tutton salt K-2[Cu(H2O)(6)](SO4)(2x)(SeO4)(2-2x) has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)(6)](2+) ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O)(6)](2+) ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Delta, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. RESULTS: cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5) to a respiratory (V5.TM6*P) strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5), Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. CONCLUSION: Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential activities of just three proteins: Hap4, Cat8 and Mig1. Overall, our data support genetic remodelling in V5.TM6*P consistent with a respiratory metabolism which is insensitive to external glucose concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a Bragg grating written in an eccentric-cored polymer optical fibre for measurement of strain, bend and temperature. The strain sensitivity achieves 1.13 pm µe -1. The temperature response shows a negative sign with the thermal sensitivity of -50.1 pm ?C-1. For bend sensing, this device exhibits a strong fibre orientational dependence, wide bend curvature range of ±22.7 m-1 and a high bend sensitivity of 63.3 pm/m-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report a systematic investigation of the dependence of both temperature and strain sensitivities on the jiber Bragg grating (FBG) type, including the wellknown Type I, Type IIA, and a new type which we have designated Type 1.4, using both hydrogen-Ji-ee and hydrogenated B/Ge codoped jibers. We have identijed distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, duul-parameter sensor device. Three dual-grating sensing schemes with different combinations of gruting types have been constructed and compared. The Type IA-Type IIA combination exhibits the best pe$ormance and is superior to that of previously reported gruting-based structures. The characteristics of the measurement errors in such dualgrating sensor systems is also presented in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally characterized a birefringent microstructured polymer fiber of specific construction, which allows for single mode propagation in two cores separated by a pair of large holes. The fiber exhibits high birefringence in each of the cores as well as relatively weak coupling between the cores. Spectral dependence of the group and the phase modal birefringence was measured using an interferometric method. We have also measured the sensing characteristics of the fiber such as polarimetric sensitivity to hydrostatic pressure, strain and temperature. Moreover, we have studied the effect of hydrostatic pressure and strain on coupling between the cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report a systematic investigation of the dependence of both temperature and strain sensitivities on the jiber Bragg grating (FBG) type, including the wellknown Type I, Type IIA, and a new type which we have designated Type 1.4, using both hydrogen-Ji-ee and hydrogenated B/Ge codoped jibers. We have identijed distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, duul-parameter sensor device. Three dual-grating sensing schemes with different combinations of gruting types have been constructed and compared. The Type IA-Type IIA combination exhibits the best pe$ormance and is superior to that of previously reported gruting-based structures. The characteristics of the measurement errors in such dualgrating sensor systems is also presented in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first demonstration of the simultaneous measurement of strain and curvature, with temperature compensation, using a single superstructure fibre Bragg grating (SFBG). The SFBG exhibits the properties of both the fibre Bragg grating (FBG) and the long period fibre grating (LPG) such that its spectral response facilitates strain measurement from the wavelength shift of the FBG-like characteristic, and independent measurement of curvature from the LPG-like mode-splitting characteristic. The dependence of the LPG mode-splitting on the mode order has also been investigated and utilised for the measurement of very small curvatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a systematic investigation of the dependence of both temperature and strain sensitivities on the fiber Bragg grating type, including the well-known Type I, Type IIA, and a new type that we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibres. We have identified distinct sensitivity characteristics for each grating type, and we have used them to implement a novel dual-grating, dual-parameter sensor device. Three dual-grating sensing schemes with different combinations of grating type have been constructed and compared, and that of a Type IA-Type IIA combination exhibits the best performance, which is also superior to that of previously reported grating-based structures. The characteristics of the measurement errors in such dual-grating sensor systems is also presented in detail. © 2004 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With a new finite strain anisotropic framework, we introduce a unified approach for constitutive model- ing and delamination of composites. We describe a finite-strain semi-implicit integration algorithm and the application to assumed-strain hexahedra. In a laminate composite, the laminae are modeled by an anisotropic Kirchhoff/Saint-Venant material and the interfaces are modeled by the exponential cohesive law with intrinsic characteristic length and the criterion by Benzeggagh and Kenane for the equivalent fracture toughness. For the element formulation, a weighted least-squares algorithm is used to calculate the mixed strain. Löwdin frames are used to model orthotropic materials without the added task of per- forming a polar decomposition or empirical frames. To assess the validity of our proposals and inspect step and mesh size dependence, a least-squares based hexahedral element is implemented and tested in depth in both deformation and delamination examples.