974 resultados para Stochastic dynamics
Resumo:
We apply Stochastic Dynamics method for a differential equations model, proposed by Marc Lipsitch and collaborators (Proc. R. Soc. Lond. B 260, 321, 1995), for which the transmission dynamics of parasites occurs from a parent to its offspring (vertical transmission), and by contact with infected host (horizontal transmission). Herpes, Hepatitis and AIDS are examples of diseases for which both horizontal and vertical transmission occur simultaneously during the virus spreading. Understanding the role of each type of transmission in the infection prevalence on a susceptible host population may provide some information about the factors that contribute for the eradication and/or control of those diseases. We present a pair mean-field approximation obtained from the master equation of the model. The pair approximation is formed by the differential equations of the susceptible and infected population densities and the differential equations of pairs that contribute to the former ones. In terms of the model parameters, we obtain the conditions that lead to the disease eradication, and set up the phase diagram based on the local stability analysis of fixed points. We also perform Monte Carlo simulations of the model on complete graphs and Erdös-Rényi graphs in order to investigate the influence of population size and neighborhood on the previous mean-field results; by this way, we also expect to evaluate the contribution of vertical and horizontal transmission on the elimination of parasite. Pair Approximation for a Model of Vertical and Horizontal Transmission of Parasites.
Resumo:
In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe di segnale neurale, fenomeno riconducibile alla sincronizzazione.
Resumo:
Il presente lavoro ha lo scopo di comprendere i processi sottesi ai pattern di coesistenza tra le specie di invertebrati sorgentizi, distinguendo tra dinamiche stocastiche e deterministiche. Le sorgenti sono ecosistemi complessi e alcune loro caratteristiche (ad esempio l’insularità, la stabilità termica, la struttura ecotonale “a mosaico”, la frequente presenza di specie rare ed endemiche, o l’elevata diversità in taxa) le rendono laboratori naturali utili allo studio dei processi ecologici, tra cui i processi di assembly. Al fine di studiare queste dinamiche è necessario un approccio multi-scala, per questo motivi sono state prese in considerazione tre scale spaziali. A scala locale è stato compiuto un campionamento stagionale su sette sorgenti (quattro temporanee e tre permanenti) del Monte Prinzera, un affioramento ofiolitico vicino alla città di Parma. In questa area sono stati valutati l’efficacia e l’impatto ambientale di diversi metodi di campionamento e sono stati analizzati i drivers ecologici che influenzano le comunità. A scala più ampia sono state campionate per due volte 15 sorgenti della regione Emilia Romagna, al fine di identificare il ruolo della dispersione e la possibile presenza di un effetto di niche-filtering. A scala continentale sono state raccolte informazioni di letteratura riguardanti sorgenti dell’area Paleartica occidentale, e sono stati studiati i pattern biogeografici e l’influenza dei fattori climatici sulle comunità. Sono stati presi in considerazione differenti taxa di invertebrati (macroinvertebrati, ostracodi, acari acquatici e copepodi), scegliendo tra quelli che si prestavano meglio allo studio dei diversi processi in base alle loro caratteristiche biologiche e all’approfondimento tassonomico raggiungibile. I campionamenti biologici in sorgente sono caratterizzati da diversi problemi metodologici e possono causare impatti sugli ambienti. In questo lavoro sono stati paragonati due diversi metodi: l’utilizzo del retino con un approccio multi-habitat proporzionale e l’uso combinato di trappole e lavaggio di campioni di vegetazione. Il retino fornisce dati più accurati e completi, ma anche significativi disturbi sulle componenti biotiche e abiotiche delle sorgenti. Questo metodo è quindi raccomandato solo se il campionamento ha come scopo un’approfondita analisi della biodiversità. D’altra parte l’uso delle trappole e il lavaggio della vegetazione sono metodi affidabili che presentano minori impatti sull’ecosistema, quindi sono adatti a studi ecologici finalizzati all’analisi della struttura delle comunità. Questo lavoro ha confermato che i processi niche-based sono determinanti nello strutturare le comunità di ambienti sorgentizi, e che i driver ambientali spiegano una rilevante percentuale della variabilità delle comunità. Infatti le comunità di invertebrati del Monte Prinzera sono influenzate da fattori legati al chimismo delle acque, alla composizione e all’eterogeneità dell’habitat, all’idroperiodo e alle fluttuazioni della portata. Le sorgenti permanenti mostrano variazioni stagionali per quanto riguarda le concentrazioni dei principali ioni, mentre la conduttività, il pH e la temperatura dell’acqua sono più stabili. È probabile che sia la stabilità termica di questi ambienti a spiegare l’assenza di variazioni stagionali nella struttura delle comunità di macroinvertebrati. L’azione di niche-filtering delle sorgenti è stata analizzata tramite lo studio della diversità funzionale delle comunità di ostracodi dell’Emilia-Romagna. Le sorgenti ospitano più del 50% del pool di specie regionale, e numerose specie sono state rinvenute esclusivamente in questi habitat. Questo è il primo studio che analizza la diversità funzionale degli ostracodi, è stato quindi necessario stilare una lista di tratti funzionali. Analizzando il pool di specie regionale, la diversità funzionale nelle sorgenti non è significativamente diversa da quella misurata in comunità assemblate in maniera casuale. Le sorgenti non limitano quindi la diversità funzionale tra specie coesistenti, ma si può concludere che, data la soddisfazione delle esigenze ecologiche delle diverse specie, i processi di assembly in sorgente potrebbero essere influenzati da fattori stocastici come la dispersione, la speciazione e le estinzioni locali. In aggiunta, tutte le comunità studiate presentano pattern spaziali riconoscibili, rivelando una limitazione della dispersione tra le sorgenti, almeno per alcuni taxa. Il caratteristico isolamento delle sorgenti potrebbe essere la causa di questa limitazione, influenzando maggiormente i taxa a dispersione passiva rispetto a quelli a dispersione attiva. In ogni caso nelle comunità emiliano-romagnole i fattori spaziali spiegano solo una ridotta percentuale della variabilità biologica totale, mentre tutte le comunità risultano influenzate maggiormente dalle variabili ambientali. Il controllo ambientale è quindi prevalente rispetto a quello attuato dai fattori spaziali. Questo risultato dimostra che, nonostante le dinamiche stocastiche siano importanti in tutte le comunità studiate, a questa scala spaziale i fattori deterministici ricoprono un ruolo prevalente. I processi stocastici diventano più influenti invece nei climi aridi, dove il disturbo collegato ai frequenti eventi di disseccamento delle sorgenti provoca una dinamica source-sink tra le diverse comunità. Si è infatti notato che la variabilità spiegata dai fattori ambientali diminuisce all’aumentare dell’aridità del clima. Disturbi frequenti potrebbero provocare estinzioni locali seguite da ricolonizzazioni di specie provenienti dai siti vicini, riducendo la corrispondenza tra gli organismi e le loro richieste ambientali e quindi diminuendo la quantità di variabilità spiegata dai fattori ambientali. Si può quindi concludere che processi deterministici e stocastici non si escludono mutualmente, ma contribuiscono contemporaneamente a strutturare le comunità di invertebrati sorgentizi. Infine, a scala continentale, le comunità di ostracodi sorgentizi mostrano chiari pattern biogeografici e sono organizzate lungo gradienti ambientali principalmente collegati altitudine, latitudine, temperatura dell’acqua e conducibilità. Anche la tipologia di sorgente (elocrena, reocrena o limnocrena) è influente sulla composizione delle comunità. La presenza di specie rare ed endemiche inoltre caratterizza specifiche regioni geografiche.
Resumo:
We analyze a recent proposal for spontaneous mirror symmetry breaking based on the coupling of first-order enantioselective autocatalysis and direct production of the enantiomers that invokes a critical role for intrinsic reaction noise. For isolated systems, the racemic state is the unique stable outcome for both stochastic and deterministic dynamics when the system is in compliance with the constraints dictated by the thermodynamics of chemical reaction processes. In open systems, the racemic outcome also results for both stochastic and deterministic dynamics when driving the auto-catalysis unidirectionally by external reagents. Nonracemic states can result in the latter only if the reverse reactions are strictly zero: these are kinetically controlled outcomes for small populations and volumes, and can be simulated by stochastic dynamics. However, the stability of the thermodynamic limit proves that the racemic outcome is the unique stable state for strictly irreversible externally driven autocatalysis. These findings contradict the suggestion that the inhibition requirement of the Frank autocatalytic model for the emergence of homochirality may be relaxed in a noise-induced mechanism.
Resumo:
Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks. © 2012 American Physical Society.
Resumo:
Mathematical descriptions of birth–death–movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth–death-movement process applied to a typical two–dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean–field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects, and; (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean–field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean–field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth–death–movement process.
Resumo:
Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.
Resumo:
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity. 2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates. 3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate. 4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates. 5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.
Resumo:
The aim of this paper is to investigate the steady state response of beams under the action of random support motions. The study is of relevance in the context of earthquake response of extended land based structures such as pipelines and long span bridges, and, secondary systems such as piping networks in nuclear power plant installations. The following complicating features are accounted for in the response analysis: (a) differential support motions: this is characterized in terms of cross power spectral density functions associated with distinct support motions, (b) nonlinear support conditions, and (c) stochastically inhomogeneous stiffness and mass variations of the beam structure; questions on non-Gaussian models for these variations are considered. The method of stochastic finite elements is combined with equivalent linearization technique and Monte Carlo simulations to obtain response moments.
Resumo:
Gene expression in living systems is inherently stochastic, and tends to produce varying numbers of proteins over repeated cycles of transcription and translation. In this paper, an expression is derived for the steady-state protein number distribution starting from a two-stage kinetic model of the gene expression process involving p proteins and r mRNAs. The derivation is based on an exact path integral evaluation of the joint distribution, P(p, r, t), of p and r at time t, which can be expressed in terms of the coupled Langevin equations for p and r that represent the two-stage model in continuum form. The steady-state distribution of p alone, P(p), is obtained from P(p, r, t) (a bivariate Gaussian) by integrating out the r degrees of freedom and taking the limit t -> infinity. P(p) is found to be proportional to the product of a Gaussian and a complementary error function. It provides a generally satisfactory fit to simulation data on the same two-stage process when the translational efficiency (a measure of intrinsic noise levels in the system) is relatively low; it is less successful as a model of the data when the translational efficiency (and noise levels) are high.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
To test the effectiveness of stochastic single-chain models in describing the dynamics of entangled polymers, we systematically compare one such model; the slip-spring model; to a multichain model solved using stochastic molecular dynamics(MD) simulations (the Kremer-Grest model). The comparison involves investigating if the single-chain model can adequately describe both a microscopic dynamical and a macroscopic rheological quantity for a range of chain lengths. Choosing a particular chain length in the slip-spring model, the parameter values that best reproduce the mean-square displacement of a group of monomers is determined by fitting toMDdata. Using the same set of parameters we then test if the predictions of the mean-square displacements for other chain lengths agree with the MD calculations. We followed this by a comparison of the time dependent stress relaxation moduli obtained from the two models for a range of chain lengths. After identifying a limitation of the original slip-spring model in describing the static structure of the polymer chain as seen in MD, we remedy this by introducing a pairwise repulsive potential between the monomers in the chains. Poor agreement of the mean-square monomer displacements at short times can be rectified by the use of generalized Langevin equations for the dynamics and resulted in significantly improved agreement.
Resumo:
Major research on equity index dynamics has investigated only US indices (usually the S&P 500) and has provided contradictory results. In this paper a clarification and extension of that previous research is given. We find that European equity indices have quite different dynamics from the S&P 500. Each of the European indices considered may be satisfactorily modelled using either an affine model with price and volatility jumps or a GARCH volatility process without jumps. The S&P 500 dynamics are much more difficult to capture in a jump-diffusion framework.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.