969 resultados para Stimulation électrique transcrânienne à courant direct
Resumo:
Les systèmes cholinergique et dopaminergique jouent un rôle prépondérant dans les fonctions cognitives. Ce rôle est exercé principalement grâce à leur action modulatrice de l’activité des neurones pyramidaux du cortex préfrontal. L’interaction pharmacologique entre ces systèmes est bien documentée mais les études de leurs interactions neuroanatomiques sont rares, étant donné qu’ils sont impliqués dans une transmission diffuse plutôt que synaptique. Ce travail de thèse visait à développer une expertise pour analyser ce type de transmission diffuse en microscopie confocale. Nous avons étudié les relations de microproximité entre ces différents systèmes dans le cortex préfrontal médian (mPFC) de rats et souris. En particulier, la densité des varicosités axonales en passant a été quantifiée dans les segments des fibres cholinergiques et dopaminergiques à une distance mutuelle de moins de 3 µm ou à moins de 3 µm des somas de cellules pyramidales. Cette microproximité était considérée comme une zone d’interaction probable entre les éléments neuronaux. La quantification était effectuée après triple-marquage par immunofluorescence et acquisition des images de 1 µm par microscopie confocale. Afin d’étudier la plasticité de ces relations de microproximité, cette analyse a été effectuée dans des conditions témoins, après une activation du mPFC et dans un modèle de schizophrénie par déplétion des neurones cholinergiques du noyau accumbens. Les résultats démontrent que 1. Les fibres cholinergiques interagissent avec des fibres dopaminergiques et ce sur les mêmes neurones pyramidaux de la couche V du mPFC. Ce résultat suggère différents apports des systèmes cholinergique et dopaminergique dans l’intégration effectuée par une même cellule pyramidale. 2. La densité des varicosités en passant cholinergiques et dopaminergiques sur des segments de fibre en microproximité réciproque est plus élevée comparé aux segments plus distants les uns des autres. Ce résultat suggère un enrichissement du nombre de varicosités axonales dans les zones d’interaction. 3. La densité des varicosités en passant sur des segments de fibre cholinergique en microproximité de cellules pyramidales, immunoúactives pour c-Fos après une stimulation visuelle et une stimulation électrique des noyaux cholinergiques projetant au mPFC est plus élevée que la densité des varicosités de segments en microproximité de cellules pyramidales non-activées. Ce résultat suggère un enrichissement des varicosités axonales dépendant de l’activité neuronale locale au niveau de la zone d'interaction avec d'autres éléments neuronaux. 4. La densité des varicosités en passant des fibres dopaminergiques a été significativement diminuée dans le mPFC de rats ayant subi une déplétion cholinergique dans le noyau accumbens, comparée aux témoins. Ces résultats supportent des interrelations entre la plasticité structurelle des varicosités dopaminergiques et le fonctionnement cortical. L’ensemble des donneès démontre une plasticité de la densité locale des varicosités axonales en fonction de l’activité neuronale locale. Cet enrichissement activité-dépendant contribue vraisemblablement au maintien d’une interaction neurochimique entre deux éléments neuronaux.
Resumo:
Les informations olfactives sont connues pour leur capacité à induire des comportements moteurs spécifiques. En dépit de nombreuses observations comportementales chez les vertébrés, on ne connaît toujours pas les mécanismes et les voies nerveuses qui sous-tendent ces phénomènes de transformation olfacto-locomotrices. Chez la lamproie, des travaux récents ont permis de décrire cette voie, et les mécanismes responsables de la transformation des entrées olfactives en activité locomotrice (Derjean et al., 2010). Cette voie prend origine dans la partie médiane du bulbe olfactif, et envoie des projections vers le tubercule postérieur, une région qui se trouve dans le diencéphale. De là, les neurones projettent directement vers la Région Locomotrice Mésencéphalique, connue pour envoyer des connexions vers les neurones réticulospinaux, et activer la locomotion. L’objectif de cette étude était d’établir si l’ensemble des neurones réticulospinaux répond aux stimulations olfactives. Pour ce faire, nous avons utilisé sur une préparation de cerveau isolé de lamproie des techniques d’électrophysiologie et d’imagerie calcique. La stimulation électrique des nerfs olfactifs, de la région médiane du bulbe olfactif ou du tubercule postérieur a provoqué une activation de toutes les cellules réticulospinales qui se retrouvent dans les quatre noyaux réticulaires (ARRN : Noyau Réticulaire Rhombencéphalique Antérieur; MRN : Noyau Réticulaire Mésencéphalique; MRRN : Noyau Réticulaire Rhombencéphalique Moyen; PRRN : Noyau Réticulaire Rhombencéphalique Postérieur). Seule la partie médiane du bulbe olfactif est impliquée dans le passage de l’information olfactive vers les neurones réticulospinaux. Nous avons aussi découvert que le blocage des récepteurs GABAergiques dans la partie médiane du bulbe olfactif augmentait les réponses olfactives de façon considérable dans les cellules réticulospinales. Nous avons montré ainsi qu’il existe un tonus inhibiteur impliqué dans la dépression modulatrice de la voie olfacto-locomotrice. Ce travail a permis de montrer que la stimulation des afférences sensorielles olfactives active simultanément l’ensemble des populations de neurones réticulospinaux qui commandent la locomotion. De plus, il existerait un tonus inhibiteur GABAergique, au niveau de la partie médiane du bulbe olfactif, responsable d’une dépression modulatrice dans la voie olfacto-locomotrice.
Resumo:
Bien que la douleur soit une expérience subjective universelle, la façon de la percevoir et de l’interpréter est modulée par une multitude de facteurs. Plusieurs interventions cognitives se sont montrées efficaces pour réduire la douleur dans des conditions cliniques et expérimentales. Cette thèse s’intéressera particulièrement aux mécanismes psychophysiologiques impliqués dans les stratégies de modulation volontaire de la douleur. Ces stratégies sont intéressantes puisqu’elles encouragent une prise en charge par l’individu, lui permettant de jouer un rôle actif dans la régulation de sa douleur. La première étude s’intéresse à l’efficacité du biofeedback comme moyen de modulation volontaire de la douleur. Il s’agissait de déterminer si le fait de présenter une rétroaction de l’amplitude du réflex RIII (évoqué par une stimulation électrique du nerf sural) au cours d’un entraînement de plusieurs essais permettrait au participant d’adopter des stratégies de modulation de la douleur et d’activer volontairement des mécanismes de contrôle descendant de la douleur. De façon à évaluer spécifiquement les changements induits par le biofeedback, la modulation du réflexe RIII et de la douleur était comparée dans trois groupes (biofeedback valide, faux biofeedback et groupe contrôle sans rétroaction). Dans les trois groupes, il était suggéré aux participants d’utiliser des stratégies cognitives de modulation de la douleur (attention, modulation de la respiration, réévaluation cognitive et imagerie mentale) afin d’augmenter ou de diminuer leur réflexe RIII comparativement à leur niveau de base. Les résultats de notre étude indiquent que les participants des 3 groupes ont réussi à moduler leur réflexe RIII (p<0,001) ainsi que leurs évaluations de douleur (p<0,001) (intensité et désagrément). Les résultats de notre étude montrent que l’entraînement au biofeedback n’était pas nécessaire pour obtenir une modulation du réflexe RIII et de la douleur, ce qui suggère que l’utilisation de stratégies cognitives pourrait être suffisante pour déclencher des mécanismes de contrôle de la douleur. La deuxième étude découle de la première et s’intéressait à l’influence de la fréquence et de la phase respiratoire sur la nociception spinale, l’activité cérébrale et la perception de douleur. Le contrôle volontaire de la respiration est un moyen commun de régulation des émotions et est fréquemment utilisé en combinaison avec d’autres techniques (ex. : relaxation, méditation) dans le but de réguler la douleur. Les participants étaient invités à synchroniser leur respiration à des indices sonores indiquant le moment de l’inspiration et de l’expiration. Trois patrons de respiration étaient proposés (respiration à 0,1Hz avec une inspiration de 4 secondes, respiration à 0,1Hz avec une inspiration de 2 secondes et respiration à 0,2Hz avec une inspiration de 2 secondes. La moitié des stimulations étaient données durant l’inspiration et l’autre moitié durant l’expiration. Afin d’évaluer l’effet de ces manipulations, l’amplitude du RIII, l’évaluation subjective d’intensité de la douleur et de l’anxiété suscitée par le choc en plus des potentiels évoqués étaient mesurés. Les résultats de cette étude démontrent que les évaluations d’intensité de la douleur n’étaient pas affectées par le patron respiratoire (p=0,3), mais étaient statistiquement plus basses durant l’inspiration comparativement à l’expiration (p=0,02). Un effet de phase (p=0,03) était également observé sur les potentiels évoqués durant la condition de respiration à 0,1hHz avec une inspiration de 2 secondes comparativement au patron de respiration de 0,2Hz. Paradoxalement, l’amplitude du réflexe RIII était augmenté durant l’inspiration (p=0,02) comparativement à l’expiration. Ces résultats montrent que la manipulation de la fréquence et de la phase respiratoires (par une synchronisation imposée) a un effet marginal sur les évaluations de douleur et sur l’activité cérébrale et spinale évoquée par une stimulation électrique (douleur aigüe). Cela suggère que d’autres mécanismes contribuent aux effets analgésiques observés dans la relaxation et la méditation. Plus largement, nos résultats font état de la nécessité d’études plus approfondies avec une méthodologie plus rigoureuse afin de contrôler les effets non spécifiques aux traitements évalués. Une meilleure connaissance des mécanismes sous-tendant chaque stratégie permettrait de mieux cibler les clientèles susceptibles d’y répondre et de mieux considérer le ratio coût bénéfice de chaque traitement.
Resumo:
Il existe plusieurs théories du contrôle moteur, chacune présumant qu’une différente variable du mouvement est réglée par le cortex moteur. On trouve parmi elles la théorie du modèle interne qui a émis l’hypothèse que le cortex moteur programme la trajectoire du mouvement et l’activité électromyographique (EMG) d’une action motrice. Une autre, appelée l’hypothèse du point d’équilibre, suggère que le cortex moteur établisse et rétablisse des seuils spatiaux; les positions des segments du corps auxquelles les muscles et les réflexes commencent à s’activer. Selon ce dernier, les paramètres du mouvement sont dérivés sans pré-programmation, en fonction de la différence entre la position actuelle et la position seuil des segments du corps. Pour examiner de plus près ces deux théories, nous avons examiné l’effet d’un changement volontaire de l’angle du coude sur les influences cortico-spinales chez des sujets sains en employant la stimulation magnétique transcrânienne (TMS) par-dessus le site du cortex moteur projetant aux motoneurones des muscles du coude. L’état de cette aire du cerveau a été évalué à un angle de flexion du coude activement établi par les sujets, ainsi qu’à un angle d’extension, représentant un déplacement dans le plan horizontal de 100°. L’EMG de deux fléchisseurs du coude (le biceps et le muscle brachio-radial) et de deux extenseurs (les chefs médial et latéral du triceps) a été enregistrée. L’état d’excitabilité des motoneurones peut influer sur les amplitudes des potentiels évoqués moteurs (MEPs) élicitées par la TMS. Deux techniques ont été entreprises dans le but de réduire l’effet de cette variable. La première était une perturbation mécanique qui raccourcissait les muscles à l'étude, produisant ainsi une période de silence EMG. La TMS a été envoyée avec un retard après la perturbation qui entraînait la production du MEP pendant la période de silence. La deuxième technique avait également le but d’équilibrer l’EMG des muscles aux deux angles du coude. Des forces assistantes ont été appliquées au bras par un moteur externe afin de compenser les forces produites par les muscles lorsqu’ils étaient actifs comme agonistes d’un mouvement. Les résultats des deux séries étaient analogues. Un muscle était facilité quand il prenait le rôle d’agoniste d’un mouvement, de manière à ce que les MEPs observés dans le biceps fussent de plus grandes amplitudes quand le coude était à la position de flexion, et ceux obtenus des deux extenseurs étaient plus grands à l’angle d’extension. Les MEPs examinés dans le muscle brachio-radial n'étaient pas significativement différents aux deux emplacements de l’articulation. Ces résultats démontrent que les influences cortico-spinales et l’activité EMG peuvent être dissociées, ce qui permet de conclure que la voie cortico-spinale ne programme pas l’EMG à être générée par les muscles. Ils suggèrent aussi que le système cortico-spinal établit les seuils spatiaux d’activation des muscles lorsqu’un segment se déplace d’une position à une autre. Cette idée suggère que des déficiences dans le contrôle des seuils spatiaux soient à la base de certains troubles moteurs d’origines neurologiques tels que l’hypotonie et la spasticité.
Resumo:
L’expérience subjective accompagnant un mouvement se construit a posteriori en intégrant différentes sources d’informations qui s’inter-influencent à différents moments tant avant qu’après le mouvement. Cette expérience subjective est interprétée par un modèle d’attribution bayésien afin de créer une expérience d’agentivité et de contrôle sur les mouvements de son propre corps. Afin de déterminer l’apport de l’interaction entre les paramètres considérés par le modèle d’attribution et d’investiguer la présence de disparités inter-individuelles dans la formation de l’expérience subjective du mouvement, une série de 90 pulsations simples de stimulation magnétique transcrânienne (SMT) sur le cortex moteur primaire (M1) suivi de multiples questions sur l’expérience subjective reliée au mouvement provoqué a été effectuée chez 20 participants normaux. Les données objectives du mouvement ont été recueillies par électromyographie (EMG) et capture du mouvement. Un modèle de régression a entre autres été effectué pour chaque participant afin de voir quelle proportion du jugement subjectif pouvait être expliqué par des indices objectifs et cette proportion variait grandement entre les participants. Les résultats de la présente étude indiquent la présence d’une capacité individuelle à se former des jugements subjectifs reflétant adéquatement la réalité comme en témoigne la cohérence entre les différentes mesures d’acuité et plusieurs variables mesurant l’expérience subjective.
Resumo:
Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.
Resumo:
Le contrôle des mouvements du bras fait intervenir plusieurs voies provenant du cerveau. Cette thèse, composée principalement de deux études, tente d’éclaircir les contributions des voies tirant leur origine du système vestibulaire et du cortex moteur. Dans la première étude (Raptis et al 2007), impliquant des mouvements d’atteinte, nous avons cerné l’importance des voies descendantes partant du système vestibulaire pour l’équivalence motrice, i.e. la capacité du système moteur à atteindre un but moteur donné lorsque le nombre de degrés de liberté articulaires varie. L’hypothèse émise était que le système vestibulaire joue un rôle essentiel dans l’équivalence motrice. Nous avons comparé la capacité d’équivalence motrice de sujets sains et de patients vestibulodéficients chroniques lors de mouvements nécessitant un contrôle des positions du bras et du tronc. Pendant que leur vision était temporairement bloquée, les sujets devaient soit maintenir une position de l’index pendant une flexion du tronc, soit atteindre une cible dans l’espace péri-personnel en combinant le mouvement du bras avec une flexion du tronc. Lors d’essais déterminés aléatoirement et imprévus par les participants, leur tronc était retenu par un mécanisme électromagnétique s’activant en même temps que le signal de départ. Les sujets sains ont pu préserver la position ou la trajectoire de l’index dans les deux conditions du tronc (libre, bloqué) en adaptant avec une courte latence (60-180 ms) les mouvements articulaires au niveau du coude et de l’épaule. En comparaison, six des sept patients vestibulodéficients chroniques ont présenté des déficits au plan des adaptations angulaires compensatoires. Pour ces patients, entre 30 % et 100 % du mouvement du tronc n’a pas été compensé et a été transmis à la position ou trajectoire de l’index. Ces résultats indiqueraient que les influences vestibulaires évoquées par le mouvement de la tête pendant la flexion du tronc jouent un rôle majeur pour garantir l’équivalence motrice dans ces tâches d’atteinte lorsque le nombre de degrés de liberté articulaires varie. Également, ils démontrent que la plasticité de long terme survenant spontanément après une lésion vestibulaire unilatérale complète ne serait pas suffisante pour permettre au SNC de retrouver un niveau d’équivalence motrice normal dans les actions combinant un déplacement du bras et du tronc. Ces tâches de coordination bras-tronc constituent ainsi une approche inédite et sensible pour l’évaluation clinique des déficits vestibulaires. Elles permettent de sonder une dimension fonctionnelle des influences vestibulaires qui n’était pas prise en compte dans les tests cliniques usuels, dont la sensibilité relativement limitée empêche souvent la détection d’insuffisances vestibulaires six mois après une lésion de ces voies. Avec cette première étude, nous avons donc exploré comment le cerveau et les voies descendantes intègrent des degrés de liberté articulaires supplémentaires dans le contrôle du bras. Dans la seconde étude (Raptis et al 2010), notre but était de clarifier la nature des variables spécifiées par les voies descendantes pour le contrôle d’actions motrices réalisées avec ce membre. Nous avons testé l’hypothèse selon laquelle les voies corticospinales contrôlent la position et les mouvements des bras en modulant la position-seuil (position de référence à partir de laquelle les muscles commencent à être activés en réponse à une déviation de cette référence). Selon ce principe, les voies corticospinales ne spécifieraient pas directement les patrons d’activité EMG, ce qui se refléterait par une dissociation entre l’EMG et l’excitabilité corticospinale pour des positions-seuils différentes. Dans un manipulandum, des participants (n=16) ont modifié leur angle du poignet, d’une position de flexion (45°) à une position d’extension (-25°), et vice-versa. Les forces élastiques passives des muscles ont été compensées avec un moteur couple afin que les sujets puissent égaliser leur activité EMG de base dans les deux positions. L’excitabilité motoneuronale dans ces positions a été comparée à travers l’analyse des réponses EMG évoquées à la suite d’étirements brefs. Dans les deux positions, le niveau d’EMG et l’excitabilité motoneuronale étaient semblables. De plus, ces tests ont permis de montrer que le repositionnement du poignet était associé à une translation de la position-seuil. Par contre, malgré la similitude de l’excitabilité motoneuronale dans ces positions, l’excitabilité corticospinale des muscles du poignet était significativement différente : les impulsions de stimulation magnétique transcrânienne (TMS; à 1.2 MT, sur l’aire du poignet de M1) ont provoqué des potentiels moteurs évoqués (MEP) de plus grande amplitude en flexion pour les fléchisseurs comparativement à la position d’extension et vice-versa pour les extenseurs (p<0.005 pour le groupe). Lorsque les mêmes positions étaient établies après une relaxation profonde, les réponses réflexes et les amplitudes des MEPs ont drastiquement diminué. La relation caractéristique observée entre position physique et amplitude des MEPs dans le positionnement actif s’est aussi estompée lorsque les muscles étaient relâchés. Cette étude suggère que la voie corticospinale, en association avec les autres voies descendantes, participerait au contrôle de la position-seuil, un processus qui prédéterminerait le référentiel spatial dans lequel l’activité EMG émerge. Ce contrôle de la « référence » constituerait un principe commun s’appliquant à la fois au contrôle de la force musculaire, de la position, du mouvement et de la relaxation. Nous avons aussi mis en évidence qu’il est nécessaire, dans les prochaines recherches ou applications utilisant la TMS, de prendre en compte la configuration-seuil des articulations, afin de bien interpréter les réponses musculaires (ou leurs changements) évoquées par cette technique; en effet, la configuration-seuil influencerait de manière notable l’excitabilité corticomotrice, qui peut être considérée comme un indicateur non seulement lors d’activités musculaires, mais aussi cognitives, après apprentissages moteurs ou lésions neurologiques causant des déficits moteurs (ex. spasticité, faiblesse). Considérées dans leur ensemble, ces deux études apportent un éclairage inédit sur des principes fondamentaux du contrôle moteur : nous y illustrons de manière plus large le rôle du système vestibulaire dans les tâches d’atteinte exigeant une coordination entre le bras et son « support » (le tronc) et clarifions l’implication des voies corticomotrices dans la spécification de paramètres élémentaires du contrôle moteur du bras. De plus amples recherches sont cependant nécessaires afin de mieux comprendre comment les systèmes sensoriels et descendants (e.g. vestibulo-, réticulo-, rubro-, propriospinal) participent et interagissent avec les signaux corticofugaux afin de spécifier les seuils neuromusculaires dans le contrôle de la posture et du mouvement.
Resumo:
Après un accident vasculaire cérébral (AVC), 30% des personnes ont une atteinte de la fonction motrice du membre supérieur. Un des mécanismes pouvant intervenir dans la récupération motrice après un AVC est la réorganisation des interactions interhémisphériques. À ce jour, la plupart des études se sont intéressées aux interactions entre les représentations des muscles de la main. Or la réalisation de mouvements de la main nécessite une coordination précise des muscles proximaux de l’épaule et le maintien d’une stabilité assurée par les muscles du tronc. Cependant, il existe peu d’informations sur le contrôle interhémisphérique de ces muscles. Ainsi, l’objectif de cette étude était de caractériser les interactions entre les représentations corticales des muscles proximaux (Deltoïde antérieur (DA)), et axiaux (Erecteur spinal (ES L1)) chez le sujet sain et de les comparer avec les interactions interhémisphériques entre les représentations des muscles distaux (1er interosseux dorsal (FDI)). Deux techniques de stimulation magnétique transcrânienne ont été utilisées pour évaluer ces interactions. La stimulation du cortex moteur ipsilatéral évoque une période de silence ipsilatérale (iSP)-reflétant l’inhibition interhémiphérique-dans le FDI et le DA. Dans ES L1, l’iSP est précédée d’une facilitation. Le paradigme de l’impulsion pairée démontre aussi la présence d’inhibition interhémisphérique dans les trois muscles. Ces résultats suggèrent un patron distinct d’interactions réciproques entre les représentations des muscles distaux, proximaux et axiaux qui peut être expliqué à la fois par des changements d’excitabilité au niveau cortical et sous-cortical. Ces résultats pourraient servir de bases normatives afin d’évaluer les changements survenant suite à un AVC.
Resumo:
Les personnes vieillissantes doivent composer au quotidien avec des douleurs chroniques. Le but de ce travail est de mieux comprendre les mécanismes sous-jacents qui contribueraient aux douleurs chroniques liées au vieillissement et par là, ouvrir un chemin vers de nouvelles perspectives thérapeutiques. Les contrôles inhibiteurs diffus nociceptifs (CIDN) ont un rôle qui n’est pas des moindres dans le contrôle de la douleur. Des études expérimentales examinant l’effet analgésique de la contre stimulation hétérotopique nociceptive (HNCS), un protocole permettant de tester l’efficacité de ces CIDN, suggèrent que le recrutement des CIDN au sein de cette population était plus faible (i.e. moins d’inhibition) comparé à une population plus jeune. En revanche, les études examinant la sensibilisation centrale induite par sommation temporelle (TS) de la douleur rapportent des résultats mitigés. De plus, une composante importante influençant l’expérience de douleur, les ressources cognitives, dont l’inhibition cognitive, se voient aussi décliner avec l’âge. Premièrement, le recrutement des CIDN a été comparé entre des participants sains, jeunes et des plus âgés avec la HNCS, et le recrutement des mécanismes de sensibilisation centrale avec la TS. La stimulation électrique du nerf sural a été choisie pour permettre de quantifier la douleur, tout en prenant une mesure indicative de la nociception spinale qu’est le réflexe nociceptif spinal (RIII). Nos sujets ont aussi participé à une tâche cognitive (le Stroop), testant l’inhibition cognitive. Deuxièmement, l’efficacité des CIDN ainsi que de l’inhibition cognitive a été testée chez les jeunes et les aînés en imagerie par résonance magnétique (IRM), afin de vérifier la relation entre ces deux mesures psychophysiques et l’épaisseur corticale des régions qui y sont impliquées ainsi que l’effet de l’âge sur celles-ci. Les résultats suggèrent un moindre recrutement des CIDN chez les plus âgés lors de l’expérimentation de la HNCS. Également, les sujets âgés présentaient des capacités d’inhibitions cognitives plus faibles que les jeunes. En plus, une corrélation entre l’inhibition cognitive et la modulation du réflexe RIII par la HNCS a été mise en évidence. Pour l’expérience de TS, les résultats étaient comparables pour les deux groupes, suggérant que les mécanismes impliqués dans la régulation de la douleur ne subiraient pas l’effet de l’âge de la même manière. Pour l’étude de l’épaisseur corticale, on y trouve une diminution globale de l’épaisseur corticale liée à l’âge, mais aussi une corrélation de l’analgésie par la HNCS avec l’inhibition cognitive et également, une relation des deux avec l’épaisseur corticale du cortex orbitofrontal (OFC) latéral gauche, suggérant la possibilité d’une existence d’un réseau neuronal au moins partiellement commun du contrôle inhibiteur descendant sensoriel et cognitif. Ce travail montre que l’effet de l’âge sur les mécanismes centraux de la régulation de la douleur est loin d’être uniforme. Également, il montre une corrélation entre la modulation endogène de la douleur et l’inhibition cognitive, ces deux processus seraient associés à une même région cérébrale. Ces résultats pourraient contribuer à identifier d’autres méthodes thérapeutiques, ouvrant ainsi une nouvelle avenue vers d’autres options dans la prise en charge des douleurs chroniques chez les personnes vieillissantes.
Resumo:
Brain lesions in the visual associative cortex are known to impair visual perception, i.e., the capacity to correctly perceive different aspects of the visual world, such as motion, color, or shapes. Visual perception can be influenced by non-invasive brain stimulation such as transcranial direct current stimulation (tDCS). In a recently developed technique called high definition (HD) tDCS, small HD-electrodes are used instead of the sponge electrodes in the conventional approach. This is believed to achieve high focality and precision over the target area. In this paper we tested the effects of cathodal and anodal HD-tDCS over the right V5 on motion and shape perception in a single blind, within-subject, sham controlled, cross-over trial. The purpose of the study was to prove the high focality of the stimulation only over the target area. Twenty one healthy volunteers received 20 min of 2 mA cathodal, anodal and sham stimulation over the right V5 and their performance on a visual test was recorded. The results showed significant improvement in motion perception in the left hemifield after cathodal HD-tDCS, but not in shape perception. Sham and anodal HD-tDCS did not affect performance. The specific effect of influencing performance of visual tasks by modulating the excitability of the neurons in the visual cortex might be explained by the complexity of perceptual information needed for the tasks. This provokes a "noisy" activation state of the encoding neuronal patterns. We speculate that in this case cathodal HD-tDCS may focus the correct perception by decreasing global excitation and thus diminishing the "noise" below threshold.
Resumo:
Résumé : INTRODUCTION : Le rappel de douleurs passées est souvent inexact. Ce phénomène, connu sous le nom de biais mnémonique, pourrait être lié au développement de certaines douleurs chroniques. Dans une étude précédente, notre laboratoire a montré, grâce à l’électroencéphalographie, que l’activité du gyrus temporal supérieur (GTS) était positivement corrélée à l’exagération des rappels douloureux. L’objectif de cette étude était de confirmer si l’activité cérébrale du GTS est impliquée causalement dans le phénomène du biais mnémonique. MÉTHODES : Dans cette étude randomisée à double insu, la stimulation magnétique transcrânienne (TMS) fut utilisée pour perturber temporairement l’activité du GTS (paradigme de lésion virtuelle). Les participants étaient assignés aléatoirement au groupe contrôle (TMS simulée, n = 21) ou au groupe expérimental (TMS réelle, n = 21). L’intensité et l’aspect désagréable de la douleur ont été évalués grâce à des échelles visuelles analogues (ÉVA; 0 à 10) immédiatement après l’événement douloureux (stimulations électriques du nerf sural droit) et au rappel, 2 mois plus tard. L’exactitude du rappel douloureux fut calculée en soustrayant l’ÉVA au rappel de l’ÉVA initiale. RÉSULTATS : Le biais mnémonique de l’intensité de la douleur était similaire dans les deux groupes (contrôle = -0,3, expérimental = 0,0; p = 0,83) alors que le biais mnémonique de l’aspect désagréable de la douleur était significativement inférieur dans le groupe expérimental (contrôle = 1.0, expérimental = -0,4; p < 0,05). CONCLUSION : Nos résultats suggèrent que le GTS affecte spécifiquement nos souvenirs liés à l’aspect motivo-affectif de la douleur. Étant donné le lien entre l’exagération des souvenirs douloureux et la persistance de la douleur, l’inhibition du GTS pourrait être une avenue intéressante pour prévenir le développement de douleur chronique.
Resumo:
Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal.
Resumo:
Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal.