998 resultados para Stimulates Growth


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems. © 2010 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

beta-Hydroxy-beta-methylbutyrate (HM beta) supplementation is used to treat cancer, sepsis and exercise-induced muscle damage. However, its effects on animal and human health and the consequences of this treatment in other tissues (e. g., fat and liver) have not been examined. The purpose of this study was to evaluate the effects of HM beta supplementation on skeletal muscle hypertrophy and the expression of proteins involved in insulin signalling. Rats were treated with HM beta (320 mg/kg body weight) or saline for one month. The skeletal muscle hypertrophy and insulin signalling were evaluated by western blotting, and hormonal concentrations were evaluated using ELISAs. HM beta supplementation induced muscle hypertrophy in the extensor digitorum longus (EDL) and soleus muscles and increased serum insulin levels, the expression of the mammalian target of rapamycin (mTOR) and phosphorylation of p70S6K in the EDL muscle. Expression of the insulin receptor was increased only in liver. Thus, our results suggest that HM beta supplementation can be used to increase muscle mass without adverse health effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of laser phototherapy on the release of growth factors by human gingival fibroblasts were studied in vitro. Cells from a primary culture were irradiated twice (6 h interval), with continuous diode laser [gallium-aluminum-arsenium (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP),_660 nm] in punctual and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). Positive [10% fetal bovine serum (FBS)] and negative (1%FBS) controls were not irradiated. Production of keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF) was quantified by enzyme-linked immunosorbent assay (ELISA). The data were statistically compared by analysis of variance (ANOVA) followed by Tukey`s test (P a parts per thousand currency signaEuro parts per thousand 0.05). The characterization of the cell line indicated a mesenchymal nature. KGF release was similar in all groups, while that of bFGF was significantly greater (1.49-times) in groups treated with infra-red laser. It was concluded that increased production of bFGF could be one of the mechanisms by which infra-red laser stimulates wound healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

it has been demonstrated that the effect of GH on bone tissue is reduced with aging. In this study we tested the hypothesis that the action of GH on osteoblastic cells is donor-age-dependent by investigating the effect of GH on the development of osteoblastic phenotype in cultures of cells from adolescents (13-16 years old), young adults (18-35 years old), and adults (36-49 years old). Osteoblastic cells derived from human alveolar bone were cultured with or without GH for periods of up to 21 days, and parameters of in vitro osteogenesis and gene expression of osteoblastic markers were evaluated. GH increased culture growth, collagen content and alkaline phosphatase (ALP) activity in cultures from adolescents and young adults, whereas non-significant effect was observed in cultures from adults. While GH significantly increased the bone-like formation in cultures from adolescents, a slightly effect was observed in cultures from young adults and no alteration was detected in cultures from adults. Results from real-time PCR demonstrated that GH upregulated ALP, osteocalcin, type I collagen, and Cbfa1 mRNA levels in cultures from adolescents. In addition, cultures from young adults showed higher ALP mRNA expression and the expression of all evaluated genes was not affected by GH in cultures from adults. These results indicate that the GH effect on both in vitro osteogenesis and gene expression of osteoblastic markers is donor-age-dependent, being more pronounced on cultures from adolescents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pituitary growth hormone (GH) stimulates postnatal growth and metabolism. The role of CH and its receptor (GHR) during prenatal development, however, is still controversial. As shown by reverse transcription polymerase chain reaction (RT-PCR), bovine in vitro fertilization embryos synthesized the transcript of GHR from Day 2 of embryonic life onwards. Real time RT-PCR revealed that synthesis of GHR mRNA was increased 5.9-fold in 6-day-old embryos compared with 2-day-old embryos. Using in situ hybridization, the mRNA encoding GHR was predominantly localized to the inner cell mass of blastocysts. The GHR protein was first visualized 3 days after fertilization. GH-specific transcripts were first detected in embryos on Day 8 of in vitro culture. As shown by transmission electron microscopy, GH treatment resulted in elimination of glycogen storage in 6- to 8-day-old embryos and an increase in exocytosis of lipid vesicles. These results suggest that a functional GHR able to modulate carbohydrate and lipid metabolism is synthesized during preimplantation development of the bovine embryo and that this GHR may be subject to activation by embryonic GH after Day 8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic fibroblast growth factor (FGF2) stimulates proliferation of the globose basal cells, the neuron:ll precursor in the olfactory epithelium. The present study investigates the expression of basic fibroblast growth factor and fibroblast growth factor receptors in the adult olfactory epithelium. FGF2 immunoreactivity was expressed widely in the olfactory epithelium, with the highest density of immunoreactivity in the supporting cells. In contrast, most cells in the epithelium expressed FGF2 mRNA. Fibroblast growth factor receptor-1 (FGFr1) immunoreactivity was densest in the basal cell and neuronal layers of the olfactory epithelium and on the apical surface of supporting cells. In the lamina propria FGF2 immunoreactivity and mRNA were densest in cells close to the olfactory nerve bundles. FGFr1 immunoreactivity was heaviest on the olfactory ensheathing cells. Using reverse transcriptase-polymerase chain reaction analysis, the olfactory epithelium was shown to express only three receptor splice variants, including one (FGFr1c) with which basic fibroblast growth factor has high affinity. Other receptor splice variants were present in the lamina propria. Taken together, these observations indicate endogenous sources of FGF? within the olfactory epithelium and lamina propria and suggest autocrine and paracrine pathways via which FGF2 might regulate olfactory neurogenesis. The observation of only three receptor splice variants in the olfactory epithelium limits the members of the fibroblast growth factor family which could act in the olfactory epithelium. The widespread distribution of receptors suggests that fibroblast growth factors may have roles other than proliferation of globose basal cells. (C) 2001 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Growth hormone (GH) is a potent regulator of bone formation. The proposed mechanism of GH action is through the stimulation of osteogenic precursor Cell proliferation and, following clonal expansion of these cells. promotion of differentiation along the osteogenic lineage. Objectives: We tested this hypothesis by studying the effects of GH on primary cell populations of human periodontal ligament cells (PLC) and alveolar bone cells (ABC), which contain a spectrum of osteogenic precursors. Method: The cell populations were assessed for mineralization potential after long-term culture in media containing beta-glycerophosphate and ascorbic acid, by the demonstration of mineral deposition by Von Kossa staining. The proliferative response of the cells to GH was determined over a 48-h period using a crystal violet dye-binding assay. The profile of the cells in terms of osteogcnic marker expression was established using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for alkaline phosphatase (ALP), osteopontin. osteocalcin, bone sialoprotein (BSP), as well as the bone morphogenetic proteins BMP-2, BMP-4 and BMP-7. Results: As expected, a variety of responses were observed ranging from no mineralization in the PLC populations to dense mineralized deposition observed in one GH-treated ABC population. Over a 48-h period GH was found to be non-mitogenic for all cell populations. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) BSP mRNA expression correlated well with mineralizing potential of the cells. The change in the mRNA expression of the osteogenic markers was determined following GH treatment of the cells over a 48-h period. GH caused an increase in ALP in most cell populations, and also in BMP expression in some cell populations. However a decrease in BSP. osteocalcin and osteopontin expression in the more highly differentiated cell populations was observed in response to GH. Conclusion: The response of the cells indicates that while long-term treatment with GH may promote mineralization, short-term treatment does not promote proliferation of osteoblast precursors nor induce expression of late osteogenic markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The main objective of this study was to explore the effect of acute creatine (Cr) ingestion on the secretion of human growth hormone (GH). METHODS: In a comparative cross-sectional study, 6 healthy male subjects ingested in resting conditions a single dose of 20 g creatine (Cr-test) vs a control (c-test). During 6 hours the Cr, creatinine and GH concentrations in blood serum were measured after Cr ingestion (Cr-test). RESULTS: During the Cr-test, all subjects showed a significant stimulation of GH (p<0.05), but with a large interindividual variability in the GH response: the difference between Cr-test and c-test averaged 83% (SD 45%). For the majority of subjects the maximum GH concentration occurred between 2 hrs and 6 hrs after the acute Cr ingestion. CONCLUSIONS: In resting conditions and at high dosages Cr enhances GH secretion, mimicking the response of strong exercise which also stimulates GH secretion. Acute body weight gain and strength increase observed after Cr supplementation should consider the indirect anabolic property of Cr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon grown in the presence of 3 ng/ml (5 X 10(-10) M) epidermal growth factor (EGF) until day 12 showed 2- to 3-fold increased activities in the two glial enzymes, glutamine synthetase (GLU-S) and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). This effect was concentration-dependent, with maximal stimulation in cultures treated daily with 3 ng/ml EGF. Addition of EGF during the first 10 culture days was sufficient to produce a maximal stimulation of both GLU-S and CNPase on day 19, whereas treatments starting on day 12 were ineffective. The stimulation of GLU-S preceded that of CNPase. The EGF-induced increase in GLU-S activity was not directly dependent on the presence of insulin, triiodothyronine, or hydrocortisone in the medium, whereas insulin was required for the stimulation of CNPase. A single dose of 5 ng/ml EGF on day 2 caused a slight but significant decrease in DNA synthesis after day 6. The present results indicate that in serum-free aggregating cell cultures of fetal rat telencephalon EGF partially inhibits DNA synthesis, and stimulates an early step in glial differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor (PPAR) delta is a member of the nuclear hormone receptor superfamily. PPARdelta may ameliorate metabolic diseases such as obesity and diabetes. However, PPARdelta's role in colorectal carcinogenesis remains controversial. Here, we present genetic and pharmacologic evidence demonstrating that deletion of PPARdelta decreases intestinal adenoma growth in Apc(Min/+) mice and inhibits tumor-promoting effects of a PPARdelta agonist GW501516. More importantly, we found that activation of PPARdelta up-regulated VEGF in colon carcinoma cells. VEGF directly promotes colon tumor epithelial cell survival through activation of PI3K-Akt signaling. These results not only highlight concerns about the use of PPARdelta agonists for treatment of metabolic disorders in patients who are at high risk for colorectal cancer, but also support the rationale for developing PPARdelta antagonists for prevention and/or treatment of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary growth of the vasculature results in the thickening of plant structures and continuously produces xylem tissue, the major biological carbon sink. Little is known about the developmental control of this quantitative trait, which displays two distinct phases in Arabidopsis thaliana hypocotyls. The later phase of accelerated xylem expansion resembles the secondary growth of trees and is triggered upon flowering by an unknown, shoot-derived signal. We found that flowering-dependent hypocotyl xylem expansion is a general feature of herbaceous plants with a rosette growth habit. Flowering induction is sufficient to trigger xylem expansion in Arabidopsis. By contrast, neither flower formation nor elongation of the main inflorescence is required. Xylem expansion also does not depend on any particular flowering time pathway or absolute age. Through analyses of natural genetic variation, we found that ERECTA acts locally to restrict xylem expansion downstream of the gibberellin (GA) pathway. Investigations of mutant and transgenic plants indicate that GA and its signaling pathway are both necessary and sufficient to directly trigger enhanced xylogenesis. Impaired GA signaling did not affect xylem expansion systemically, suggesting that it acts downstream of the mobile cue. By contrast, the GA effect was graft transmissible, suggesting that GA itself is the mobile shoot-derived signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, insulin-like growth factor-1, and platelet-derived growth factor. The synergistic mitogenic stimulation by mastoparan can be dissociated from activation of phospholipase C. Mastoparan did not stimulate phosphoinositide breakdown, Ca2+ mobilization or protein kinase C-mediated phosphorylation of a major cellular substrate or transmodulation of the epidermal growth factor receptor. In contrast, mastoparan stimulated arachidonic acid release, prostaglandin E2 production, and enhanced cAMP accumulation in the presence of forskolin. These responses were inhibited by prior treatment with pertussis toxin. Hence, mastoparan stimulates arachidonic acid release via a pertussis toxin-sensitive G protein in Swiss 3T3 cells. Arachidonic acid, like mastoparan, stimulated DNA synthesis in the presence of insulin. The ability of mastoparan to stimulate mitogenesis was reduced by pertussis toxin treatment. These results demonstrate, for the first time, that mastoparan stimulates reinitiation of DNA synthesis in Swiss 3T3 cells and indicate that this peptide may be a useful probe to elucidate signal transduction mechanisms in mitogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of dexamethasone on the development of neurons and oligodendrocytes was studied in serum-free, aggregating rat brain cell cultures. Synaptogenesis and myelination occur in this culture system. The concentration of myelin basic protein and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase were used as oligodendroglia and myelin markers. Choline acetyltransferase and acetylcholinesterase served as neuronal markers, glutamine synthetase reflected astrocyte differentiation, while ornithine decarboxylase served as a general marker for cell growth and maturation. This study showed that dexamethasone stimulated the differentiation of cholinergic neurons and astrocytes. The effect of dexamethasone on oligodendroglial differentiation and myelination depended on the stage of development: during the early phase of myelination dexamethasone had a stimulatory effect, whereas at a later stage it showed a significant inhibition.