925 resultados para Sterol Homeostasis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maintenance of ion channel homeostasis, or channelostasis, is a complex puzzle in neurons with extensive dendritic arborization, encompassing a combinatorial diversity of proteins that encode these channels and their auxiliary subunits, their localization profiles, and associated signaling machinery. Despite this, neurons exhibit amazingly stereotypic, topographically continuous maps of several functional properties along their active dendritic arbor. Here, we asked whether the membrane composition of neurons, at the level of individual ion channels, is constrained by this structural requirement of sustaining several functional maps along the same topograph. We performed global sensitivity analysis on morphologically realistic conductance-based models of hippocampal pyramidal neurons that coexpressed six well-characterized functional maps along their trunk. We generated randomized models by varying 32 underlying parameters and constrained these models with quantitative experimental measurements from the soma and dendrites of hippocampal pyramidal neurons. Analyzing valid models that satisfied experimental constraints on all six functional maps, we found topographically analogous functional maps to emerge from disparate model parameters with weak pairwise correlations between parameters. Finally, we derived a methodology to assess the contribution of individual channel conductances to the various functional measurements, using virtual knockout simulations on the valid model population. We found that the virtual knockout of individual channels resulted in variable, measurement and location-specific impacts across the population. Our results suggest collective channelostasis as a mechanism behind the robust emergence of analogous functional maps and have significant ramifications for the localization and targeting of ion channels and enzymes that regulate neural coding and homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formal synthesis of aplykurodinone-1 is accomplished starting from a suitably functionalized bicyclic lactone having the requisite cis-fused ring junction with a quaternary chiral center that was assembled following a Cp2TiCl-mediated radical cyclization protocol. Our synthetic route further elaborates implementation of Grubbs ring closing metathesis (RCM), Eschenmoser-Claisen rearrangement and iodo-lactonization reactions for the synthesis of the final tricyclic precursor of the target molecule. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica sv. typhimurium (S. enterica sv. Typhimurium) has two metal-transporting P(1)-type ATPases whose actions largely overlap with respect to growth in elevated copper. Mutants lacking both ATPases over-accumulate copper relative to wild-type or either single mutant. Such duplication of ATPases is unusual in bacterial copper tolerance. Both ATPases are under the control of MerR family metal-responsive transcriptional activators. Analyses of periplasmic copper complexes identified copper-CueP as one of the predominant metal pools. Expression of cueP was recently shown to be controlled by the same metal-responsive activator as one of the P(1)-type ATPase genes (copA), and copper-CueP is a further atypical feature of copper homeostasis in S. enterica sv. Typhimurium. Elevated copper is detected by a reporter construct driven by the promoter of copA in wild-type S. enterica sv. Typhimurium during infection of macrophages. Double mutants missing both ATPases also show reduced survival inside cultured macrophages. It is hypothesized that elevated copper within macrophages may have selected for specialized copper-resistance systems in pathogenic microorganism such as S. enterica sv. Typhimurium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH) by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified "lipid metabolism regulation" as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2(+/+)) and E2F2 deficient (E2F2(-/-)) mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2(+/+) and E2F2(-/-) mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2(-/-) mice resembles the phenotype of proliferating E2F2(+/+) liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the course of chemical investigation of marine algae collected from Karachi coast of Arabian Sea, five sterols named as sarangosterol(1), 23-methyl cholesta-5, 25-dien-3ß-ol(2) from Endarachne binghamiae (brown alga), sargasterol(3) from Dictyota indica (brown alga), cholesterol(4) from Laurencia obtusa (red alga) and clerosterol(5) from Codium iyengarii (green alga) have been isolated. Their structures were elucidated with the help of spectroscopic means.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of how amphibians can protect themselves from reactive oxygen species when exposed to the sun in an oxygen-rich atmosphere is important and interesting, not only from an evolutionary viewpoint, but also as a primer for researchers interested in mammalian skin biology, in which such peptide systems for antioxidant defense are not well studied. The identification of an antioxidant peptide named antioxidin-RL from frog (Odorrana livida) skin in this report supports the idea that a peptide antioxidant system may be a widespread antioxidant strategy among amphibian skins. Its ability to eliminate most of the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical tested within 2 s, which is much faster than the commercial antioxidant factor butylated hydroxytoluene, suggests that it has a potentially large impact on redox homeostasis in amphibian skins. Cys10 is proven to be responsible for its rapid radical scavenging function and tyrosines take part in the binding of antioxidin-RL to radicals according to our nuclear magnetic resonance assay. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous growth experiments with carnivorous southern catfish (Silurus meridionalis), the non-fecal energy lose was positively related to dietary. carbohydrate level. To test whether metabolic energy expenditure accounts for such energy loss, an experiment was performed with southern catfish juveniles (33.2-71.9 g) to study the effect of dietary carbohydrate level on fasting metabolic rate and specific dynamic action (SDA) at 27.5 degreesC. The fasting metabolic rate in this catfish was increased with dietary carbohydrate level, and the specific dynamic action (SDA) coefficient (energy expended on SDA as percent of assimilated energy) was not affected by dietary carbohydrate level. The results suggest that in southern catfish, carbohydrate overfeeding increases metabolic rate to oxidize unwanted assimilated carbohydrate. A discussion on the poor capacity of intermediate metabolism for adapting dietary carbohydrate in carnivorous fish and its possible relationship with facultative component of SDA was also documented in this paper. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphotericin B (AmB) is a popular drug frequently applied in the treatment of systemic fungal infections. In the presence of ruthenium (II) as the maker ion, the behavior of AmB to form ion channels in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes were studied by cyclic votammetry, AC impedance spectroscopy, and UV/visible absorbance spectroscopy. Different concentrations of AmB ranging from a molecularly dispersed to a highly aggregated state of the drug were investigated. In a fixed cholesterol or ergosterol content (5 mol %) in glassy carbon electrode-supported model membranes, our results showed that no matter what form of AmB, monomeric or aggregated, AmB could form ion channels in supported ergosterol-containing phosphatidylcholine bilayer model membranes. However, AmB could not form ion channels in its monomeric form in sterol-free and cholesterol-containing supported model membranes. On the one hand, when AmB is present as an aggregated state, it can form ion channels in cholesterol-containing supported model membranes; on the other hand, only when AmB is present as a relatively highly aggregated state can it form ion channels in sterol-free supported phosphatidylcholine bilayer model membranes. The results showed that the state of AmB played an important role in forming ion channels in sterol-free and cholesterol-containing supported phosphatidylcholine bilayer model membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel polyhydroxyl sterol ( 1) along with one known polyhydroxyl sterol (2), and two known monoglycosides, asterosaponin P-1 (3) and its desulfated monoglycoside (4), have been isolated from the whole bodies of a common Pacific starfish Asterina pectinifera. The structure of the new polyhydroxyl sterol was determined as 15beta, 16beta-isopropylidenedioxy-5alpha-cholestane-3beta, 4beta, 6alpha, 7alpha, 8,26-hexaol by spectroscopic methods, including FABMS, HR-FABMS, 1D and 2D NMR techniques.