998 resultados para Steroidal receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the second most common cause of cancer-related deaths in Western males. Current diagnostic, prognostic and treatment approaches are not ideal and advanced metastatic prostate cancer is incurable. There is an urgent need for improved adjunctive therapies and markers for this disease. GPCRs are likely to play a significant role in the initiation and progression of prostate cancer. Over the last decade, it has emerged that G protein coupled receptors (GPCRs) are likely to function as homodimers and heterodimers. Heterodimerisation between GPCRs can result in the formation of novel pharmacological receptors with altered functional outcomes, and a number of GPCR heterodimers have been implicated in the pathogenesis of human disease. Importantly, novel GPCR heterodimers represent potential new targets for the development of more specific therapeutic drugs. Ghrelin is a 28 amino acid peptide hormone which has a unique n-octanoic acid post-translational modification. Ghrelin has a number of important physiological roles, including roles in appetite regulation and the stimulation of growth hormone release. The ghrelin receptor is the growth hormone secretagogue receptor type 1a, GHS-R1a, a seven transmembrane domain GPCR, and GHS-R1b is a C-terminally truncated isoform of the ghrelin receptor, consisting of five transmembrane domains. Growing evidence suggests that ghrelin and the ghrelin receptor isoforms, GHS-R1a and GHS-R1b, may have a role in the progression of a number of cancers, including prostate cancer. Previous studies by our research group have shown that the truncated ghrelin receptor isoform, GHS-R1b, is not expressed in normal prostate, however, it is expressed in prostate cancer. The altered expression of this truncated isoform may reflect a difference between a normal and cancerous state. A number of mutant GPCRs have been shown to regulate the function of their corresponding wild-type receptors. Therefore, we investigated the potential role of interactions between GHS-R1a and GHS-R1b, which are co-expressed in prostate cancer and aimed to investigate the function of this potentially new pharmacological receptor. In 2005, obestatin, a 23 amino acid C-terminally amidated peptide derived from preproghrelin was identified and was described as opposing the stimulating effects of ghrelin on appetite and food intake. GPR39, an orphan GPCR which is closely related to the ghrelin receptor, was identified as the endogenous receptor for obestatin. Recently, however, the ability of obestatin to oppose the effects of ghrelin on appetite and food intake has been questioned, and furthermore, it appears that GPR39 may in fact not be the obestatin receptor. The role of GPR39 in the prostate is of interest, however, as it is a zinc receptor. Zinc has a unique role in the biology of the prostate, where it is normally accumulated at high levels, and zinc accumulation is altered in the development of prostate malignancy. Ghrelin and zinc have important roles in prostate cancer and dimerisation of their receptors may have novel roles in malignant prostate cells. The aim of the current study, therefore, was to demonstrate the formation of GHS-R1a/GHS-R1b and GHS-R1a/GPR39 heterodimers and to investigate potential functions of these heterodimers in prostate cancer cell lines. To demonstrate dimerisation we first employed a classical co-immunoprecipitation technique. Using cells co-overexpressing FLAG- and Myc- tagged GHS-R1a, GHS-R1b and GPR39, we were able to co-immunoprecipitate these receptors. Significantly, however, the receptors formed high molecular weight aggregates. A number of questions have been raised over the propensity of GPCRs to aggregate during co-immunoprecipitation as a result of their hydrophobic nature and this may be misinterpreted as receptor dimerisation. As we observed significant receptor aggregation in this study, we used additional methods to confirm the specificity of these putative GPCR interactions. We used two different resonance energy transfer (RET) methods; bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET), to investigate interactions between the ghrelin receptor isoforms and GPR39. RET is the transfer of energy from a donor fluorophore to an acceptor fluorophore when they are in close proximity, and RET methods are, therefore, applicable to the observation of specific protein-protein interactions. Extensive studies using the second generation bioluminescence resonance energy transfer (BRET2) technology were performed, however, a number of technical limitations were observed. The substrate used during BRET2 studies, coelenterazine 400a, has a low quantum yield and rapid signal decay. This study highlighted the requirement for the expression of donor and acceptor tagged receptors at high levels so that a BRET ratio can be determined. After performing a number of BRET2 experimental controls, our BRET2 data did not fit the predicted results for a specific interaction between these receptors. The interactions that we observed may in fact represent ‘bystander BRET’ resulting from high levels of expression, forcing the donor and acceptor into close proximity. Our FRET studies employed two different FRET techniques, acceptor photobleaching FRET and sensitised emission FRET measured by flow cytometry. We were unable to observe any significant FRET, or FRET values that were likely to result from specific receptor dimerisation between GHS-R1a, GHS-R1b and GPR39. While we were unable to conclusively demonstrate direct dimerisation between GHS-R1a, GHS-R1b and GPR39 using several methods, our findings do not exclude the possibility that these receptors interact. We aimed to investigate if co-expression of combinations of these receptors had functional effects in prostate cancers cells. It has previously been demonstrated that ghrelin stimulates cell proliferation in prostate cancer cell lines, through ERK1/2 activation, and GPR39 can stimulate ERK1/2 signalling in response to zinc treatments. Additionally, both GHS-R1a and GPR39 display a high level of constitutive signalling and these constitutively active receptors can attenuate apoptosis when overexpressed individually in some cell types. We, therefore, investigated ERK1/2 and AKT signalling and cell survival in prostate cancer the potential modulation of these functions by dimerisation between GHS-R1a, GHS-R1b and GPR39. Expression of these receptors in the PC-3 prostate cancer cell line, either alone or in combination, did not alter constitutive ERK1/2 or AKT signalling, basal apoptosis or tunicamycin-stimulated apoptosis, compared to controls. In summary, the potential interactions between the ghrelin receptor isoforms, GHS-R1a and GHS-R1b, and the related zinc receptor, GPR39, and the potential for functional outcomes in prostate cancer were investigated using a number of independent methods. We did not definitively demonstrate the formation of these dimers using a number of state of the art methods to directly demonstrate receptor-receptor interactions. We investigated a number of potential functions of GPR39 and GHS-R1a in the prostate and did not observe altered function in response to co-expression of these receptors. The technical questions raised by this study highlight the requirement for the application of extensive controls when using current methods for the demonstration of GPCR dimerisation. Similar findings in this field reflect the current controversy surrounding the investigation of GPCR dimerisation. Although GHS-R1a/GHS-R1b or GHS-R1a/GPR39 heterodimerisation was not clearly demonstrated, this study provides a basis for future investigations of these receptors in prostate cancer. Additionally, the results presented in this study and growing evidence in the literature highlight the requirement for an extensive understanding of the experimental method and the performance of a range of controls to avoid the spurious interpretation of data gained from artificial expression systems. The future development of more robust techniques for investigating GPCR dimerisation is clearly required and will enable us to elucidate whether GHS-R1a, GHS-R1b and GPR39 form physiologically relevant dimers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart failure is a complex disorder, characterized by activation of the sympathetic nervous system, leading to dysregulated Ca2+ homeostasis in cardiac myocytes and tissue remodeling. In a variety of diseases, cardiac malfunction is associated with aberrant fluxes of Ca2+ across both the surface membrane and the internal Ca2+ store, the sarcoplasmic reticulum (SR). One prominent hypothesis residues is that in heart failure, the activity of the ryanodine receptor (RyR2) Ca2+ release channel in the SR is increased due to excess phosphorylation and that this contributes to excess SR Ca2+ leak in diastole, reduced SR Ca2+ load and decreased contractility (Huke & Bers, 2008). There is controversy over which serine residues in RyR2 are hyperphosphorylated in animal models of heart failure and whether this is via the CaMKII or the PKA-linked signaling pathway. S2808, S2814 and S2030 in RyR2 have been variously claimed to be hyperphosphorylated. Our aim was to examine the degree of phosphorylation of these residues in RyR2 from failing human hearts. The use of human tissue was approved by the Human Research Ethics Committee, The Prince Charles Hospital, EC28114. Left ventricular tissue samples were obtained from an explanted heart of a patient with endstage heart failure (Emery Dreifuss Muscular Dystrophy with cardiomyopathy) and non-failing tissue was from a patient with cystic fibrosis undergoing heart-lung transplantation with no history of heart disease. SR vesicles were prepared as described by Laver et al. (1995) and examined with SDS-Page and Western Blot. Transferred proteins were probed with antibodies to detect total protein phosphorylation, phosphorylation of RyR2 serine residues S2808, S2814, S2030 and for the key proteins calsequestrin, triadin, junctin and FKBP12.6. To avoid membrane stripping artifact, each membrane was exposed to one phosphorylation-specific antibody and signal densities quantified using Bio-Rad Quantity One software. We found no distinguishable difference between failing and healthy hearts in the protein expression levels of RyR2, triadin, junctin or calsequestrin. We found an expected upregulation of total RyR2 phosphorylation in the failing heart sample, compared to a matched amount of RyR2 (quantified using densiometry) in healthy heart. Probing with antibodies detecting only the phosphorylated form of the specific RyR2 residues showed that the increase in total RyR2 phosphorylation in the failing heart was due to hyperphosphorylation of S2808 and S2814. We found that S2030 phosphorylation levels were unchanged in human heart failure. Interestingly, we found that S2030 has a basal level of phosphorylation in the healthy human heart, different from the absence of basal phosphorylation recently reported in rodent heart (Huke & Bers, 2008). Finally, preliminary results indicate that less FKBP 12.6 is associated with RyR2 in the failing heart, possibly as a consequence of PKA activation. In conclusion, residues S2808 and S2814 are hyperphosphorylated in human heart failure, presumably due to upregulation of the CaMKII and/or PKA signaling pathway as a result of chronic activation of the sympathetic nervous system. Such changes in RyR2 phosphorylation are believed to contribute to the leaky RyR2 phenotype associated with heart failure, which increases the incidence of arrhythmia and contributes to the severely impaired contractile performance of the failing heart. Huke S & Bers DM. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications 376, 80-85. Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR & Dulhunty AF. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology 147, 7-22. Proceedings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Endometriosis is a polygenic disease with a complex and multifactorial aetiology that affects 8-10% of women of reproductive age. Epidemiological data support a link between endometriosis and cancers of the reproductive tract. Fibroblast growth factor receptor 2 (FGFR2) has recently been implicated in both endometrial and breast cancer. Our previous studies on endometriosis identified significant linkage to a novel susceptibility locus on chromosome 10q26 and the FGFR2 gene maps within this linkage region. We therefore hypothesized that variation in FGFR2 may contribute to the risk of endometriosis. METHODS We genotyped 13 single nucleotide polymorphisms (SNPs) densely covering a 27 kb region within intron 2 of FGFR2 including two SNPs (rs2981582 and rs1219648) significantly associated with breast cancer and a total 40 tagSNPs across 150 kb of the FGFR2 gene. SNPs were genotyped in 958 endometriosis cases and 959 unrelated controls. RESULTS We found no evidence for association between endometriosis and FGFR2 intron 2 SNPs or SNP haplotypes and no evidence for association between endometriosis and variation across the FGFR2 gene. CONCLUSIONS Common variation in the breast-cancer implicated intron 2 and other highly plausible causative candidate regions of FGFR2 do not appear to be a major contributor to endometriosis susceptibility in our large Australian sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and opioids; however, its role in natural reward seeking remains unknown. Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity. To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant decreased intake of saccharin but had no effect on water or salty solution consumption. Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value, and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a therapeutic target for obesity induced by over-consumption of natural reinforcers.