991 resultados para Steroid-receptor Complexes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) plays a key role in adipocyte differentiation and insulin sensitivity. Its synthetic ligands, the thiazolidinediones (TZD), are used as insulin sensitizers in the treatment of type 2 diabetes. These compounds induce both adipocyte differentiation in cell culture models and promote weight gain in rodents and humans. Here, we report on the identification of a new synthetic PPARgamma antagonist, the phosphonophosphate SR-202, which inhibits both TZD-stimulated recruitment of the coactivator steroid receptor coactivator-1 and TZD-induced transcriptional activity of the receptor. In cell culture, SR-202 efficiently antagonizes hormone- and TZD-induced adipocyte differentiation. In vivo, decreasing PPARgamma activity, either by treatment with SR-202 or by invalidation of one allele of the PPARgamma gene, leads to a reduction of both high fat diet-induced adipocyte hypertrophy and insulin resistance. These effects are accompanied by a smaller size of the adipocytes and a reduction of TNFalpha and leptin secretion. Treatment with SR-202 also dramatically improves insulin sensitivity in the diabetic ob/ob mice. Thus, although we cannot exclude that its actions involve additional signaling mechanisms, SR-202 represents a new selective PPARgamma antagonist that is effective both in vitro and in vivo. Because it yields both antiobesity and antidiabetic effects, SR-202 may be a lead for new compounds to be used in the treatment of obesity and type 2 diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les récepteurs nucléaires (RN) sont des facteurs de transcription ligand dépendants qui contrôlent une grande variété de processus biologiques de la physiologie humaine, ce qui a fait d'eux des cibles pharmacologiques privilégiées pour de nombreuses maladies. L'un de ces récepteurs, le récepteur de l’œstrogène alpha (ERα), peut activer la prolifération cellulaire dans certaines sections de l'épithélium mammaire tandis qu’un autre, le récepteur de l'acide rétinoïque alpha (RARα), peut provoquer un arrêt de la croissance et la différenciation cellulaire. La signalisation de ces deux récepteurs peut être altérée dans le cancer du sein, contribuant à la tumorigénèse mammaire. L’activité d’ERα peut être bloquée par les anti-oestrogènes (AE) pour inhiber la prolifération des cellules tumorales mammaires. Par contre, l’activation des voies de RARα avec des rétinoïdes dans un contexte clinique a rencontré peu de succès. Ceci pourrait résulter du manque de spécificité des ligands testés pour RARα et/ou de leur activité seulement dans certains sous-types de tumeurs mammaires. Puisque les récepteurs nucléaires forment des homo- et hétéro-dimères, nous avons cherché à développer de nouveaux essais pharmacologiques pour étudier l'activité de complexes dimériques spécifiques, leur dynamique d’association et la structure quaternaire des récepteurs des œstrogènes. Nous décrivons ici une nouvelle technique FRET, surnommée BRET avec renforcement de fluorescence par transferts combinés (BRETFect), qui permet de détecter la formation de complexes de récepteurs nucléaires ternaires. Le BRETFect peut suivre l'activation des hétérodimères ERα-ERβ et met en évidence un mécanisme allostérique d'activation que chaque récepteur exerce sur son partenaire de dimérisation. L'utilisation de BRETFect en combinaison avec le PCA nous a permis d'observer la formation de multimères d’ERα fonctionnels dans des cellules vivantes pour la première fois. La formation de multimères est favorisée par les AE induisant la dégradation du récepteur des oestrogènes, ce qui pourrait contribuer à leurs propriétés spécifiques. Ces essais de BRET apportent une nette amélioration par rapport aux tests de vecteurs rapporteur luciférase classique, en fournissant des informations spécifiques aux récepteurs en temps réel sans aucune interférence par d'autres processus tels que la transcription et de la traduction. L'utilisation de ces tests nous a permis de caractériser les propriétés de modulation de l’activité des récepteurs nucléaires d’une nouvelle classe de molécules hybrides qui peuvent à la fois lier ERa ou RAR et inhiber les HDACs, conduisant au développement de nouvelles molécules prometteuses bifonctionnelles telles que la molécule hybride RAR-agoniste/HDACi TTNN-HA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In metazoans, bone morphogenetic proteins (BMPS) direct a myriad of developmental and adult homeostatic evens through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like. Kinasel and -2 (ALK1/ACVR1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp(+). In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sat mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by sax(P), a viable allele previously reported to be mill, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first: class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVR1-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To elucidate the molecular profile of hormonal steroid receptor status, we analyzed ER-alpha, ER-beta, and PGR mRNA and protein expression in 80 breast carcinomas using reverse transcriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical analysis. Qualitative analysis revealed positive expression of ER-alpha, ER-beta, and PGR mRNA in 48%, 59%, and 48% of the breast carcinomas, respectively. ER-alpha, ER-beta, and PGR transcript overexpression was observed in 51%, 0%, and 12% of the cases, respectively, whereas moderate or strong protein expression was detected in 68%, 78%, and 49% of the cases, respectively. Tumor grade was negatively correlated with transcript and protein levels of ER-alpha (P = .0169 and P = .0006, respectively) and PGR (P = .0034 and P = .0005, respectively). Similarly, proliferative index Ki-67 was negatively associated with transcript and protein levels of ER-alpha (P = .0006 and P < .0001, respectively) and PGR (P = .0258 and P =. 0005, respectively). These findings suggest that ER-alpha and PGR expression are associated with well-differentiated breast tumors and less directly related to cell proliferation. A significant statistical difference was observed between lymph node status and ER-beta protein expression (P = .0208). In ER-alpha-negative tumors, we detected a correlation between ER-beta protein expression and high levels of Ki-67. These data suggest that ER-beta could be a prognostic marker in human breast cancer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic ethanol intake is associated with sex hormone disturbances, and it is well known that melatonin plays a key role in regulating several reproductive processes. We report the effects of ethanol intake and melatonin treatment (at doses of 100. μg/100. g. BW/day) on sex hormones and steroid receptors in the ovaries, oviducts and uteri of ethanol-preferring rats. After 150 days of treatment, animals were euthanized, and tissue samples were harvested to evaluate androgen, estrogen, progesterone and melatonin receptor subunits (AR, ER-α and ER-β, PRA, PRB and MT1R, respectively). Melatonin decreased estradiol (E2) and increased progesterone (P4) and 6-sulfatoxymelatonin (6-STM), while an ethanol-melatonin combination reduced both P4 and E2. Ovarian AR was not influenced by either treatment, and oviduct AR was reduced after ethanol-melatonin combination. Oviduct ER-α, ER-β and uterine ER-β were down-regulated by either ethanol or melatonin. Conversely, ovarian PRA and PRB were positively regulated by ethanol and ethanol-melatonin combination, whereas PRA was down-regulated in the uterus and oviduct after ethanol consumption. MT1R was increased in ovaries and uteri of melatonin-treated rats. Ethanol and melatonin exert opposite effects on E2 and P4, and they differentially regulate the expression of sex steroid receptors in female reproductive tissues. © 2013 Elsevier Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Steroid hormones regulate target cell function via quantitative and qualitative changes in RNA and protein synthesis. In the testis, androgens are known to play an important role in the regulation of spermatogenesis. The Sertoli cell (SC), whose function is thought to be supportive to the developing germ cell, has been implicated as an androgen target cell. Although cytoplasmic androgen receptors and chromatin acceptor sites for androgen-receptor complexes have been found in SC, effects on RNA synthesis have not previously been demonstrated. In this study, SC RNA synthetic activity was characterized and the effect of testosterone on SC nuclear transcriptional activity in vitro assessed. SC exhibited two fold increases in RNA and ribonucleotide pool concentrations during sexual maturation. These changes appeared to correlate with a previously observed increase in protein concentration per cell over an age span of 15-60 days. Following incubation with ('3)H-uridine, SC from older animals incorporated more label into RNA than SC from younger animals. Since the relative concentration of cytidine nucleotides was higher in SC from older rats, the age-related increase in tritium incorporation may reflect an associated increase in incorporation of ('3)H-CMP into RNA. Alternatively, the enhanced labeling may be the result of either a change in the base composition of the RNA resulting in a higher proportion of CMP and UMP in the RNA, or compartmentalization of the nucleotide pools. The physiologic consequences of these maturational alterations of nucleotide pools remains to be elucidated. RNA polymerase activities were characterized in intact nuclei obtained from cultured rat SC. (alpha)-Amanitin resistant RNA polymerase I+III activity was identical when measured in low or high ionic strength (0.05 M or 0.25 M ammonium sulfate (AS)) in the presence of MnCl(,2) or MgCl(,2), with a divalent cation optimum of 1.6 mM. RNA polymerase II was most active in 0.25 M AS and 1.6 mM MnCl(,2). The apparent Km of RNA polymerase II for UTP was 0.016 mM in 0.05 M AS and 0.037 mM in 0.25 M AS. The apparent Km values for total polymerase activity was 0.008 mM and 0.036 mM at low and high ionic strenghts, respectively. These data indicate that Sertoli cell RNA polymerase activities have catalytic properties characteristic of eukaryotic polymerase activities in general. In the presence of 21 (mu)M testosterone, RNA polymerase II activity increased two fold at 15 minutes, then declined but was still elevated over control values six hours after androgen addition. Polymerase I+III activity was not greatly affected by testosterone. The stimulation of polymerase II measured at 15 minutes was dose-dependent, with a maximum at 0.53 nM and no further stimulation up to 10('-5) M (ED(,50) = 0.25 nM testosterone), and was androgen specific. The results of preliminary RNA isolation and characterization experiments suggested that the synthesis of several species of RNA was enhanced by testosterone administration. These findings have great potential importance since they represent the first demonstration of a direct effect of androgens on the transcriptional process in the Sertoli cell. Furthermore, the results of these studies constitute further evidence that the Sertoli cell is a target for androgen action in the testis. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuftsin is an immunopotentiating tetrapeptide of the sequence L-Thr-L-Lys-L-Pro-L-Arg with anti-microbial and anti-tumor enhancing capabilities. These enhancing functions are manifested through the host's granulocytes and monocytes. In delineating tuftsin's mechanism of action, both radiolabeled and fluorescent probes were synthesized. The radiolabeled probe of tuftsin, L-proly-3,4-('3)H(N) -tuftsin, was obtained through the synthesis and subsequent catalytic hydrogenation of L-3,4-dehydroprolyl ('3)-tuftsin using tritium gas. This procedure yielded a probe with a specific activity of 44.9 Ci/mmole. This radiolabeled probe of tuftsin was used in competitive inhibition studies with tuftsin, the tuftsin analogues Lys-Pro-Arg, Thr-Lys-Pro-Arg(NO(,2)) and (DELTA)('3)-pro('3) -tuftsin as well as with the chemotactic peptide f-Met-Leu-Phe. From the competitive binding curves, the K(,D) for tuftsin was estimated to be 80 nM, a value that approaches the concentration of tuftsin that evokes a half maximal biological response. The approximate Ki's for the tuftsin analogues (33 nM) approached that of tuftsin itself (40 nM). On the other hand, approximately a two log difference in the Ki was seen with the chemotactic tripeptide, indicating that tuftsin may indeed be acting through the chemotactic peptide receptor. This conclusion is further strengthened by studies using an N-terminal derivitized mono-fluoresceinated tuftsin probe and image intensification microscopy. These studies showed that like the chemotactic peptide, tuftsin initially binds to diffusely distributed receptors on the surface of human granulocytes. The tuftsin-receptor complexes then rapidly redistribute to form patches (5 min @ 37(DEGREES)C) which are then internalized. Whether redistribution and internalization of tuftsin-receptor complexes is crucial in effecting a biological response, or simply an intermediary point leading ultimately to degradation, is still not clear. This process, however, may provide the target cell with an early time point in modulating the biological effects of tuftsin through down-regulation of cell surface receptor sites. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arginine methylation has been implicated in the regulation of gene expression. The coactivator-associated arginine methyltransferase 1 (CARMI/PRMT4) binds the p160 family of steroid receptor coactivators (SRCs). This association enhances transcriptional activation by nuclear receptors. Here, we generated and characterized CARM1 knockout mice. Embryos with a targeted disruption of CARM1 are 35% smaller in size than the wild-type littermates and die perinatally. We also generated Carm1-/- and Carm1+/+ mouse embryonic fibroblasts and tested gene expression in response to estrogen. Estrogenresponsive gene expression was aberrant in Carm1-/- fibroblasts and embryos, thus emphasizing the role of arginine methylation as a transcription activation tag. We subsequently studied the role of CARM1 in estrogen signaling in viva in the mammary gland. Conditional knockout of CARM1 in mammary gland and Carml-1-embryonic mammary anlagen transplant experiments did not show any defects in growth and development of the glands. To further dissect the role of CARM1 in estrogen receptor mediated transactivation, we performed cDNA microarray and serial analysis of gene expression on Carm1-/- and Carm1+/+ embryos treated with the estrogen analog, DES. Our results indicate global changes in estrogen regulated genes as well as genes involved in lipid homeostasis. Marker genes for Peroxisome Proliferator Activated Receptor γ (PPARγ) activity, adipsin and aP2, are downregulated in the Carm1-/- embryos. Furthermore, OCT frozen sections of 18.5dpc embryos, processed simultaneously for oil red O staining to look for neutral fat, reveals greatly reduced brown fat accumulation in the Carm1-/- embryos in contrast to wild-type and gain-of-function Carm1 transgenic (ubiquitous) embryo. We used a well-established 3T3-L1 preadipocyte cell line to knockdown CARM1 by short hairpin RNA. 3T3-L1 cells with CARM1 knockdown showed greatly reduced potential to differentiate into mature lipid accumulating adipocytes upon administration of adipogenic stimuli. Ligand-dependent activation of reporter genes by the PPARγ receptor showed that PPRE-luciferase reporter activity was enhanced in the presence of CARM1, additionally, luciferase activity was reduced to background levels when enzyme dead CARM1 (CARM1-VLD) was used. Thus, in this study, we have identified novel pathways that use CARM1 as coactivator and showed that CARM1 functions as a key component of PPARγ receptor mediated gene expression. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

FKBP52 (HSP56, p59, HBI) is the 59-kDa immunosuppressant FK506-binding protein and has peptidyl prolyl isomerase as well as a chaperone-like activity in vitro. FKBP52 associates with the heat shock protein HSP90 and is included in the steroid hormone receptor complexes in vivo. FKBP52 possesses a well conserved phosphorylation site for casein kinase II (CK2) that was previously shown to be associated with HSP90. Here we examined whether FKBP52 is phosphorylated by CK2 both in vivo and in vitro. Recombinant rabbit FKBP52 was phosphorylated by purified CK2. We expressed and purified deletion mutants of FKBP52 to determine the site(s) phosphorylated by CK2. Thr-143 in the hinge I region was identified as the major phosphorylation site for CK2. A synthetic peptide corresponding to this region was phosphorylated by CK2, and the peptide competitively inhibited the phosphorylation of other substrates by CK2. The [32P]phosphate labeling of FKBP52-expressing cells revealed that the same site is also phosphorylated in vivo. FK506 binding to FKBP52 did not affect the phosphorylation by CK2 and, conversely, the FK506-binding activity of FKBP52 was not affected by the phosphorylation. Most importantly, CK2-phosphorylated FKBP52 did not bind to HSP90. These results indicate that CK2 phosphorylates FKBP52 both in vitro and in vivo and thus may regulate the protein composition of chaperone-containing complexes such as those of steroid receptors and certain protein kinases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have previously shown that in HEp-2 cells, multivesicular bodies (MVBs) processing internalized epidermal growth factor–epidermal growth factor receptor complexes mature and fuse directly with lysosomes in which the complexes are degraded. The MVBs do not fuse with a prelysosomal compartment enriched in mannose 6-phosphate receptor (M6PR) as has been described in other cell types. Here we show that the cation-independent M6PR does not become enriched in the endocytic pathway en route to the lysosome, but if a pulse of M6PR or an M6PR ligand, cathepsin D, is followed, a significant fraction of these proteins are routed from the trans-Golgi to MVBs. Accumulation of M6PR does not occur because when the ligand dissociates, the receptor rapidly leaves the MVB. At steady state, most M6PR are distributed within the trans-Golgi and trans-Golgi network and in vacuolar structures distributed in the peripheral cytoplasm. We suggest that these M6PR-rich vacuoles are on the return route from MVBs to the trans-Golgi network and that a separate stable M6PR-rich compartment equivalent to the late endosome/prelysosome stage does not exist on the endosome–lysosome pathway in these cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The heat-shock protein 90 (Hsp90) is a cytosolic molecular chaperone that is highly abundant even at normal temperature. Specific functions for Hsp90 have been proposed based on the characterization of its interactions with certain transcription factors and kinases including Raf in vertebrates and flies. We therefore decided to address the role of Hsp90 for MAP kinase pathways in the budding yeast, an organism amenable to both genetic and biochemical analyses. We found that both basal and induced activities of the pheromone-signaling pathway depend on Hsp90. Signaling is defective in strains expressing low levels or point mutants of yeast Hsp90 (Hsp82), or human Hsp90β instead of the wild-type protein. Ste11, a yeast equivalent of Raf, forms complexes with wild-type Hsp90 and depends on Hsp90 function for accumulation. For budding yeast, Ste11 represents the first identified endogenous “substrate” of Hsp90. Moreover, Hsp90 functions in steroid receptor and pheromone signaling can be genetically separated as the Hsp82 point mutant T525I and the human Hsp90β are specifically defective for the former and the latter, respectively. These findings further corroborate the view that molecular chaperones must also be considered as transient or stable components of signal transduction pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) effect cellular responses by binding to FGF receptors (FGFRs). FGF bound to extracellular domains on the FGFR in the presence of heparin activates the cytoplasmic receptor tyrosine kinase through autophosphorylation. We have crystallized a complex between human FGF1 and a two-domain extracellular fragment of human FGFR2. The crystal structure, determined by multiwavelength anomalous diffraction analysis of the selenomethionyl protein, is a dimeric assemblage of 1:1 ligand:receptor complexes. FGF is bound at the junction between the two domains of one FGFR, and two such units are associated through receptor:receptor and secondary ligand:receptor interfaces. Sulfate ion positions appear to mark the course of heparin binding between FGF molecules through a basic region on receptor D2 domains. This dimeric assemblage provides a structural mechanism for FGF signal transduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coactivators previously implicated in ligand-dependent activation functions by thyroid hormone receptor (TR) include p300 and CREB-binding protein (CBP), the steroid receptor coactivator-1 (SRC-1)-related family of proteins, and the multicomponent TR-associated protein (TRAP) complex. Here we show that two positive cofactors (PC2 and PC4) derived from the upstream stimulatory activity (USA) cofactor fraction act synergistically to mediate thyroid hormone (T3)-dependent activation either by TR or by a TR-TRAP complex in an in vitro system reconstituted with purified factors and DNA templates. Significantly, the TRAP-mediated enhancement of activation by TR does not require the TATA box-binding protein-associated factors of TFIID. Furthermore, neither the pleiotropic coactivators CBP and p300 nor members of the SRC-1 family were detected in either the TR-TRAP complex or the other components of the in vitro assay system. These results show that activation by TR at the level of naked DNA templates is enhanced by cooperative functions of the TRAP coactivators and the general coactivators PC2 and PC4, and they further indicate a potential functional redundancy between TRAPs and TATA box-binding protein-associated factors in TFIID. In conjunction with earlier studies on other nuclear receptor-interacting cofactors, the present study also suggests a multistep pathway, involving distinct sets of cofactors, for activation of hormone responsive genes.