945 resultados para Stepwise Discriminant Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to translate the Structured Clinical Interview for Mood Spectrum into Brazilian Portuguese, measuring its reliability, validity, and defining scores for bipolar disorders. METHOD: Questionnaire was translated (into Brazilian Portuguese) and back-translated into English. Sample consisted of 47 subjects with bipolar disorder, 47 with major depressive disorder, 18 with schizophrenia and 22 controls. Inter-rater reliability was tested in 20 subjects with bipolar disorder and MDD. Internal consistency was measured using the Kuder Richardson formula. Forward stepwise discriminant analysis was performed. Scores were compared between groups; manic (M), depressive (D) and total (T) threshold scores were calculated through receiver operating characteristic (ROC) curves. RESULTS: Kuder Richardson coefficients were between 0.86 and 0.94. Intraclass correlation coefficient was 0.96 (CI 95 % 0.93-0.97). Subjects with bipolar disorder had higher M and T, and similar D scores, when compared to major depressive disorder (ANOVA, p < 0.001). The sub-domains that best discriminated unipolar and bipolar subjects were manic energy and manic mood. M had the best area under the curve (0.909), and values of M equal to or greater than 30 yielded 91.5% sensitivity and 74.5% specificity. CONCLUSION: Structured Clinical Interview for Mood Spectrum has good reliability and validity. Cut-off of 30 best differentiates subjects with bipolar disorder vs. unipolar depression. A cutoff score of 30 or higher in the mania sub-domain is appropriate to help make a distinction between subjects with bipolar disorder and those with unipolar depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supervised pattern recognition methods K-Nearest Neighbors (KNN), stepwise discriminant analysis (SDA), and soft independent modelling of class analogy (SIMCA) were employed in this work with the aim to investigate the relationship between the molecular structure of 27 cannabinoid compounds and their analgesic activity. Previous analyses using two unsupervised pattern recognition methods (PCA-principal component analysis and HCA-hierarchical cluster analysis) were performed and five descriptors were selected as the most relevants for the analgesic activity of the compounds studied: R (3) (charge density on substituent at position C(3)), Q (1) (charge on atom C(1)), A (surface area), log P (logarithm of the partition coefficient) and MR (molecular refractivity). The supervised pattern recognition methods (SDA, KNN, and SIMCA) were employed in order to construct a reliable model that can be able to predict the analgesic activity of new cannabinoid compounds and to validate our previous study. The results obtained using the SDA, KNN, and SIMCA methods agree perfectly with our previous model. Comparing the SDA, KNN, and SIMCA results with the PCA and HCA ones we could notice that all multivariate statistical methods classified the cannabinoid compounds studied in three groups exactly in the same way: active, moderately active, and inactive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical and biochemical composition of mango, varies according to the cultivation conditions, variety and maturation state, generally containing a high level of ascorbic acid. In order to establish the correlation between the activity of the ascorbate oxidase [E.C.1.10.3.3], and ascorbic acid level in the ripening process of the Haden mango (Mangífera índica L.), sample of the fruits related to hard green stage (zero), 2, 4, 6, 8, 10, 12 and 14 days stored at 20 ± 2oC, were tested. The samples were obtained by cutting small cubes of 8 cm3 from pulps of 8 mangoes with texture without significant difference (p£0.05) at Magness-Taylor pressure tester scale. In each sample the activity of ascorbate oxidase was followed, in order to check its participation in possible substrate losses during the ripening fruits. The ascorbic acid level and sensory profile also was determined periodically during the ripening period. The enzymatic activity was spectrophotometrically determined at 245 nm and 30oC. The ascorbic acid was analyzed according modified AOAC methodology, and sensory analysis by descriptive quantitative analysis. Data were analyzed using correlation analysis, analysis of variance (ANOVA), Tukey's test, principal component analysis and stepwise discriminant analysis. During the ripening, the ascorbate oxidase activity increased (from 0 to 5.0 x 10-1 U/ml) and the ascorbic acid level decreased (from 209.3 mg to 110.0 mg per 100g of pulp), showing a significant (p£0.05) inverse linear correlation (r=-0.98). The descriptors terms for mangoes were: characteristic flavor, characteristic aroma, sourness, astringency, yellow coloration of pulp, sweetness and succulence. The sensory profile presented significant improvement during ripening. All sensory attributes increased significantly (p£0.05) except sourness and astringency, wich decreased during the ripening of mangoes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of 25 quinone compounds with anti-trypanocidal activity was studied by using the density functional theory (DFT) method in order to calculate atomic and molecular properties to be correlated with the biological activity. The chemometric methods principal component analysis (PCA), hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA), Kth nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA) were used to obtain possible relationships between the calculated descriptors and the biological activity studied and to predict the anti-trypanocidal activity of new quinone compounds from a prediction set. Four descriptors were responsible for the separation between the active and inactive compounds: T-5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors give information on the kind of interaction that occurs between the compounds and the biological receptor. The prediction study was done with a set of three new compounds by using the PCA, HCA, SDA, KNN and SIMCA methods and two of them were predicted as active against the Trypanosoma cruzi. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A síntese e a estrutura cristalina por difração de raios-X de dois análogos de neolignanas, 2-(4-clorofenil)-1-feniletanona (20) e 2-[tio(4-clorofenil)]-1-(3,4-dimetoxifenil)propan-1-ona (12) são descritas. O composto 12 apresenta atividade intracelular contra Leishmania donovani e Leishmania amazonensis de amastigotas que causam a leishmaniose tegumentar e visceral. Além disso, a teoria do funcional de densidade (DFT) com o funcional híbrido B3LYP foi empregado para calcular um conjunto de descritores moleculares para dezenove análogos sintéticos de neolignanas com atividades antileishmaniose. Posteriormente, a análise discriminante stepwise foi realizada para investigar possíveis relações entre a estrutura molecular e atividades biológicas. Por meio dessa análise os compostos foram classificados em dois grupos ativos e inativos de acordo com seu grau de atividade biológica, e as propriedades mais importantes foram as cargas de alguns átomos, a afinidade eletrônica e o ClogP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Firmness sensing of selected varieties of apples, pears and avocado fruits has been developed using a nondestructive impact technique. In addition to firmness measurements, postharvest ripeness of apples and pears was monitored by spectrophotometric reflectance measurements, and that of avocadoes by Hunter colour measurements. The data obtained from firmness sensing were analyzed by three analytical procedures: principal component, correlation and regression, and stepwise discriminant analysis. A new software was developed to control the impact test, analyse the data, and sort the fruit into specified classes, based on the criteria obtained from a training procedure. Similar procedures were used to analyse the reflectance and colour data. Both sensing systems were able to classify fruits w i th good accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem investigated was negative effects on the ability of a university student to successfully complete a course in religious studies resulting from conflict between the methodologies and objectives of religious studies and the student's system of beliefs. Using Festinger's theory of cognitive dissonance as a theoretical framework, it was hypothesized that completing a course with a high level of success would be negatively affected by (1) failure to accept the methodologies and objectives of religious studies (methodology), (2) holding beliefs about religion that had potential conflicts with the methodologies and objectives (beliefs), (3) extrinsic religiousness, and (4) dogmatism. The causal comparative method was used. The independent variables were measured with four scales employing Likert-type items. An 8-item scale to measure acceptance of the methodologies and objectives of religious studies and a 16-item scale to measure holding of beliefs about religion having potential conflict with the methodologies were developed for this study. These scales together with a 20-item form of Rokeach's Dogmatism Scale and Feagin's 12-item Religious Orientation Scale to measure extrinsic religiousness were administered to 144 undergraduate students enrolled in randomly selected religious studies courses at Florida International University. Level of success was determined by course grade with the 27% of students receiving the highest grades classified as highly successful and the 27% receiving the lowest grades classified as not highly successful. A stepwise discriminant analysis produced a single significant function with methodology and dogmatism as the discriminants. Methodology was the principal discriminating variable. Beliefs and extrinsic religiousness failed to discriminate significantly. It was concluded that failing to accept the methodologies and objectives of religious studies and being highly dogmatic have significant negative effects on a student's success in a religious studies course. Recommendations were made for teaching to diminish these negative effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In community college nursing programs the high rate of attrition was a major concern to faculty and administrators. Since first semester attrition could lead to permanent loss of students and low retention in nursing programs, it was important to identify at-risk students early and develop proactive approaches to assist them to be successful. The goal of nursing programs was to graduate students who were eligible to take the national council licensing examination (RN). This was especially important during a time of critical shortage in the nursing workforce. ^ This study took place at a large, multi-campus community college, and used Tinto's (1975) Student Integration Model of persistence as the framework. A correlational study was conducted to determine whether the independent variables, past academic achievement, English proficiency, achievement tendency, weekly hours of employment and financial resources, could discriminate between the two grade groups, pass and not pass. Establishing the relationship between the selected variables and successful course completion might be used to reduce attrition and improve retention. Three research instruments were used to collect data. A Demographic Information form developed by the researcher was used to obtain academic data, the research questionnaire Measure of Achieving Tendency measured achievement motivation, and the Test of Adult Basic Education (TABE), Form 8, Level A, Tests 1, 4, and 5 measured the level of English proficiency. The Department of Nursing academic policy, requiring a minimum course grade of “C” or better was used to determine the final course outcome. A stepwise discriminant analysis procedure indicated that college language level and pre-semester grade point average were significant predictors of final course outcome. ^ Based on the findings of the study recommendations focused on assessing students' English proficiency prior to admission into the nursing program, an intensive remediation plan in language comprehension for at-risk students, and the selection of alternate textbooks and readings that more closely matched the English proficiency level of the students. A pilot study should be conducted to investigate the benefit of raising the admission grade point average. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to differentiate and characterize Madeira wines according to main grape varieties, the volatile composition (higher alcohols, fatty acids, ethyl esters and carbonyl compounds) was determined for 36 monovarietal Madeira wine samples elaborated from Boal, Malvazia, Sercial and Verdelho white grape varieties. The study was carried out by headspace solid-phase microextraction technique (HS-SPME), in dynamic mode, coupled with gas chromatography–mass spectrometry (GC–MS). Corrected peak area data for 42 analytes from the above mentioned chemical groups was used for statistical purposes. Principal component analysis (PCA) was applied in order to determine the main sources of variability present in the data sets and to establish the relation between samples (objects) and volatile compounds (variables). The data obtained by GC–MS shows that the most important contributions to the differentiation of Boal wines are benzyl alcohol and (E)-hex-3-en-1-ol. Ethyl octadecanoate, (Z)-hex-3-en-1-ol and benzoic acid are the major contributions in Malvazia wines and 2-methylpropan-1-ol is associated to Sercial wines. Verdelho wines are most correlated with 5-(ethoxymethyl)-furfural, nonanone and cis-9-ethyldecenoate. A 96.4% of prediction ability was obtained by the application of stepwise linear discriminant analysis (SLDA) using the 19 variables that maximise the variance of the initial data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Diplotaxis, comprising 32 or 34 species, plus several additional infraspecific taxa, displays a considerable degree of heterogeneity in the morphology, molecular markers, chromosome numbers and geographical amplitude of the species. The taxonomic relationships within the genus Diplotaxis were investigated by phenetic characterisation of germplasm belonging to 27 taxa of the genus, because there is an increasing interest in Diplotaxis, since some of its species (D. tenuifolia, D. muralis) are gathered or cultivated for human consumption, whereas others are frequent arable weeds (D. erucoides) in many European vineyards. Using a computer-aided vision system, 33 morpho-colorimetric features of seeds were electronically measured. The data were used to implement a statistical classifier, which is able to discriminate the taxa within the genus Diplotaxis, in order to compare the resulting species grouping with the current infrageneric systematics of this genus. Despite the high heterogeneity of the samples, due to the great intra-population variability, the stepwise Linear Discriminant Analysis method, applied to distinguish the groups, was able to reach over 80% correct identification. The results obtained allowed us to confirm the current taxonomic position of most taxa and suggested the taxonomic position of others for reconsideration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) images of normal breast tissue and benign and malignant breast tumour tissues, fixed in formalin, were measured at the momentum transfer range of 0.063 nm(-1) <= q (=4 pi sin(theta/2)/lambda) <= 2.720 nm(-1). Four intrinsic parameters were extracted from the scattering profiles (1D SAXS image reduced) and, from the combination of these parameters, another three parameters were also created. All parameters, intrinsic and derived, were subject to discriminant analysis, and it was verified that parameters such as the area of diffuse scatter at the momentum transfer range 0.50 <= q <= 0.56 nm(-1), the ratio between areas of fifth-order axial and third-order lateral peaks and third-order axial spacing provide the most significant information for diagnosis (p < 0.001). Thus, in this work it was verified that by combining these three parameters it was possible to classify human breast tissues as normal, benign lesion or malignant lesion with a sensitivity of 83% and a specificity of 100%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.