985 resultados para Stepped-frequency Radar


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locate full-text(opens in a new window)|View at Publisher| Export | Download | More... Atmospheric Measurement Techniques Volume 8, Issue 5, 27 May 2015, Pages 2183-2193 Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services (Article) Angulo, I.a, Grande, O.a, Jenn, D.b, Guerra, D.a, De La Vega, D.a a University of the Basque Country (UPV/EHU), Bilbao, Spain b Naval Postgraduate School, Monterey, United States View references (28) Abstract The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Current signal processing techniques to mitigate wind turbine clutter (WTC) are scarce, so the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the radar cross section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver.

For the proposed model, a representative scenario has been chosen in which both the weather radar and the wind farm are placed on clear areas; i.e., wind turbines are supposed to be illuminated only by the lowest elevation angles of the radar beam.

This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the physical optics theory and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is possible and common to obtain equivalent natural frequency and damping for a soil-foundation system from results of experimental or numerical analysis assuming the system has a single degree of freedom. Three approaches to extract natural frequency and damping were applied to the vertically vibrated soil-foundation system. The sensitivity of the computed natural frequency and damping to the soil properties was evaluated through parametric studies. About 10-20% of discrepancy in values of natural frequency was observed due to different approaches. The results help to assess the reliability of equivalent soil properties determined from the reported natural frequency of the system. Finally the results obtained using theoretical predictions with linear soil properties measured in situ were compared to those calculated from experimental data. The prediction and experimental results showed good agreements if the embedment of the foundation is neglected with stepped sine test but considered with impulse test. © 2010 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to two large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. Finally, a diffusive filling-in operation within the segmented regions produces coherent visible structures. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method for the selection of the appropriate choice of surface-mounted loading resistor required for a thin radar absorber based on a high-impedance surface (HIS) principle is demonstrated. The absorber consists of a HIS, (artificial magnetic ground plane), thickness 0.03 lambda(0) surface-loaded resistive-elements interconnecting a textured surface of square patches. The properties of absorber are characterized under normal incident using a parallel plate waveguide measurement technique over the operating frequency range of 2.6-3.95 GHz. We show that for this arrangement return loss and bandwidth are insensitive to +/- 2% tolerance variations in surface resistor values about the value predicted using the method elaborated in this letter, and that better than -28 dB at 3.125 GHz reflection loss can be obtained with an effective working bandwidth of up to 11% at -10 dB reflection loss. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1733-1775, 2009; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/mop.24454

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique is proposed for the design of engineered reflectors consisting of doubly periodic arrays printed on thin grounded dielectric substrates that reflect an incoming wave from a given incoming direction to a predetermined outgoing direction. The proposed technique is based on a combination of Floquet theory for propagation in periodic structures and reflect-array principles. A flat surface designed to reflect a TE polarized wave incident at 45 back in the direction of the impinging signal at 14.7 GHz is employed as an example. By means of full-wave simulations, it is demonstrated that the monostatic RCS of a finite reflector is comparable with the specular RCS of a metallic mirror of the same dimensions. It is further shown that comparably high monostatic RCS values are obtained for angles of incidence in the 30-60 range, which are frequency dependent and thus open opportunities for target localization. A prototype array is fabricated and experimentally tested for validation. The proposed solution can be used to modify the radar cross section of a target. Other potential applications are also discussed. © 1963-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Digital Video Broadcast Terrestrial (DVB-T) based passive radar requires the development of an antenna array that performs satisfactorily over the entire DVB-T band. The array should require no mechanical adjustments to inter-element spacing to correspond to the DVB-T carrier frequency used for any particular measurement. This paper will describe the challenges involved in designing an antenna array with a bandwidth of 450 MHz. It will discuss the design procedure and demonstrate a number of simulated array configurations. The final configuration of the array will be shown as well as simulations of the expected performance over the desired frequency span.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of radars in detecting low flying, small targets is being explored for several decades now. However radar with counter-stealth abilities namely the passive, multistatic, low frequency radars are in the focus recently. Passive radar that uses Digital Video Broadcast Terrestrial (DVB-T) signals as illuminator of opportunity is a major contender in this area. A DVB-T based passive radar requires the development of an antenna array that performs satisfactorily over the entire DVB-T band. At Fraunhofer FHR, there is currently a need for an array antenna to be designed for operation over the 450-900 MHz range with wideband beamforming and null steering capabilities. This would add to the ability of the passive radar in detecting covert targets and would improve the performance of the system. The array should require no mechanical adjustments to inter-element spacing to correspond to the DVB-T carrier frequency used for any particular measurement. Such an array would have an increased flexibility of operation in different environment or locations.

The design of such an array antenna and the applied techniques for wideband beamforming and null steering are presented in the thesis. The interaction between the inter-element spacing, the grating lobes and the mutual couplings had to be carefully studied and an optimal solution was to be reached at that meets all the specifications of the antenna array for wideband applications. Directional beams, nulls along interference directions, low sidelobe levels, polarization aspects and operation along a wide bandwidth of 450-900 MHz were some of the key considerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the use of a stepped ground plane as a means to increase the gain and front-to-back ratio of an Archimedean spiral which operates in the frequency range 3–10 GHz. The backing structure is designed to optimize the antenna performance in discrete 1 GHz bands by placing each of the eight metal steps one quarter wavelength below the corresponding active regions of the spiral. Simulated and experimental results show that this type of ground plane can be designed to enhance the antenna performance over the entire 105% operating bandwidth of the spiral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the design of a thin electromagnetic absorber which exhibits radar backscatter suppression that is independent of the wave polarisation at large incidence angles. The structure consists of a metal backed printed frequency selective surface (FSS), with resistors placed across narrow gaps inserted in the middle of each of the four sides of the conductor loops. The geometry of the periodic array and the value of the vertical and horizontal resistor pairs are carefully chosen to present a real impedance of 377 Ω at the centre operating frequency for both TE and TM polarised waves. Angular sensitivity and reflectivity bandwidth have been investigated for FSS absorber designs with thicknesses of 1, 2 and 3 mm. Each of the three structures was optimised to work at a centre frequency of 10 GHz and an incident angle of 45°. The design methodology is verified by measuring the radar backscatter suppression from a 3 mm (l / 10) thick screen in the frequency range 8–12 GHz. The absorber construction was simplified by filling the four metal gaps in each unit cell with shielding paint, and selecting the ink thickness to give the two required surface resistance values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a new method for reducing theRadar Cross-Section (RCS) of a metal backed dipole antenna. Numerical simulations are used to show that when the Perfect Electrical Conductor (PEC) is replaced by a carefully designedFrequency Selective Surface (FSS), the electromagnetic performanceof the antenna is similar in band, but the RCS of the structure is significantly lower out of band. The design of the FSSand the return loss, radiation patterns and RCS are presentedfor an antenna which operates at a center frequency of 4 GHzand the results are compared with a conventional metal backed arrangement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative phaseshifterless, wideband, micrustrip leaky-wave antenna with an electronically steerable dual-pencil-beam pattern in the H-plane is presented. The log-periodic geometry of the leaky slots of the antenna results in a wide bandwidth of 25.19%. The Jan beam can he steered up to 14° over the wide resonating band of the anteww. The beam is also steerable at a fixed frequency. by reactivelty loading the slots and a maximum steering angle of about 14° is ohserved. for different capacitor values with an improved bandwidth of 33 _i%. This concept is studied using passive components but it can be extended to varactors