854 resultados para Steel and synthetic fibres
Resumo:
Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.
Resumo:
Neocarzinostatin chromophore 1 is the active component of the antitumor antibiotic neocarzinostatin (NCS). The chromophore reacts with thiols to form a highly strained cumulene-enyne species which rapidly rearranges to a biradical intermediate which can abstract hydrogen atoms from DNA, leading to strand cleavage. DNA damage is the proposed source of biological activity for NCS. The structure of the methyl thioglycolate monoadduct 2 of NCS chromophore, including the absolute stereochemistry, was determined by NMR studies. The presence of the cumulene-enyne intermediate and the rearrangement to a biradical were supported by data from low temperature NMR investigations. Also included are synthetic approaches to NCS chromophore model compounds based on intramolecular addition of an acetylide to an aldehyde.
Resumo:
An experiment was carried out with 1 0 days old Clarias gariepinus fry over a period of 42 days to determine the effects of different feeds on growth and survival of African catfish fry in glass tanks. The experiment was designed into four treatments each having three replications. Thus treatment 1 (T1) was named as Tank Tubifex (TT) and treatment 2 (T2) as Tank Sabinco (TS), treatment 3 as Pond Tubifex (PT), and treatment 4 (T4) as Pond Sabinco (PS). Live Tubifex (protein levels 64.48%) was supplied to treatments 1 and 3 and rest of the treatments were supplied Sabinco starter-1 (protein levels 40.13%). The highest and the lowest growth in total length and weight were 12.90cm, 18.77g and 6.17cm, 4.04g recorded from the treatments 3 and 2, respectively. Growth of catfish fry under treatment 3 in terms of both length and weight were significantly higher (P<0.01) than those of the other treatments. However treatment 2 showed the significantly lowest (P<0.01) growth performance among the various treatments. The highest survival rate (92%) was also obtained with treatment 3. Tubifex proved to be the best larval feed in respect of growth and survival rate.
Resumo:
Carbon fibres are a significant volume fraction of modern structural airframes. Embedded into polymer matrices, they provide significant strength and stiffness gains by unit weight compared with competing structural materials. Here we use the Raman G peak to assess the response of carbon fibres to the application of strain, with reference to the response of graphene itself. Our data highlight the predominance of the in-plane graphene properties in all graphitic structures examined. A universal master plot relating the G peak strain sensitivity to tensile modulus of all types of carbon fibres, as well as graphene, is presented. We derive a universal value of - average - phonon shift rate with axial stress of around -5ω0 -1 (cm -1 Mpa-1), where ω0 is the G peak position at zero stress for both graphene and carbon fibre with annular morphology. The use of this for stress measurements in a variety of applications is discussed. © 2011 Macmillan Publishers Limited. All rights reserved.
Resumo:
Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.