923 resultados para Steel Structural Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural framing systems and mechanisms designed for normal use rarely possess adequate robustness to withstand the effects of large impacts, blasts and extreme earthquakes that have been experienced in recent times. Robustness is the property of systems that enables them to survive unforeseen or unusual circumstances (Knoll & Vogel, 2009). Queensland University of Technology with industry collaboration is engaged in a program of research that commenced 15 years ago to study the impact of such unforeseeable phenomena and investigate methods of improving robustness and safety with protective mechanisms embedded or designed in structural systems. This paper highlights some of the research pertaining to seismic protection of building structures, rollover protective structures and effects of vehicular impact and blast on key elements in structures that could propagate catastrophic and disproportionate collapse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated rail joints are designed in a similar way to butt jointed steel structural systems, the difference being a purpose made gap between the main rail members to maintain electrical insulation for the proper functioning of the track circuitry at all times of train operation. When loaded wheels pass the gap, they induce an impact loading with the corresponding strains in the railhead edges exceeding the plastic limit significantly, which lead to metal flow across the gap thereby increasing the risk of short circuiting and impeding the proper functioning of the signalling and broken rail identification circuitries, of which the joints are a critical part. The performance of insulated rail joints under the passage of the wheel loading is complex due to the presence of a number of interacting components and hence is not well understood. This paper presents a dynamic wheel-rail contact-impact modelling method for the determination of the impact loading; a brief description of a field experiment to capture strain signatures for validating the predicted impact loading is also presented. The process and the results of the characterisation of the materials from virgin, in-service and damaged insulated rail joints using neutron diffraction method are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering students are best able to understand theory when one explains it in relation to realistic problems and its practical applications. Teaching theory in isolation has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure. At Queensland University of Technology, a number of new methods have been introduced recently to improve the teaching and learning of steel structural design at undergradt1ate level. In the basic steel structures subject a project-based teaching method was introduced in which the students were required to analyse, design and build the lightest I most efficient steel columns for a given target capacity. A design assignment involving simple, but real structures was also introduced in the basic steel structures subject. Both these exercises simulated realistic engineering problems from the early years of the course and produced a range of benefits. Improvements to the teaching and learning was also made through integration of a number of related structural engineering subjects and by the introduction of animated computer models and laboratory models. This paper presents the details of all these innovative methods which improved greatly the students' understanding of the steel structures design process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic structural systems having a stochastic distribution of material properties and stochastic external loadings in space are analysed when a crack of deterministic size is present. The material properties and external loadings are considered to constitute independent, two-dimensional, univariate, real, homogeneous stochastic fields. The stochastic fields are characterized by their means, variances, autocorrelation functions or the equivalent power spectral density functions, and scale fluctuations. The Young's modulus and Poisson's ratio are treated to be stochastic quantities. The external loading is treated to be a stochastic field in space. The energy release rate is derived using the method of virtual crack extension. The deterministic relationship is derived to represent the sensitivities of energy release rate with respect to both virtual crack extension and real system parameter fluctuations. Taylor series expansion is used and truncation is made to the first order. This leads to the determination of second-order properties of the output quantities to the first order. Using the linear perturbations about the mean values of the output quantities, the statistical information about the energy release rates, SIF and crack opening displacements are obtained. Both plane stress and plane strain cases are considered. The general expressions for the SIF in all the three fracture modes are derived and a more detailed analysis is conducted for a mode I situation. A numerical example is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Mindlin plate with periodically distributed ribs patterns is analyzed by using homogenization techniques based on asymptotic expansion methods. The stiffness matrix of the homogenized plate is found to be dependent on the geometrical characteristics of the periodical cell, i.e. its skewness, plan shape, thickness variation etc. and on the plate material elastic constants. The computation of this plate stiffness matrix is carried out by averaging over the cell domain some solutions of different periodical boundary value problems. These boundary value problems are defined in variational form by linear first order differential operators on the cell domain and the boundary conditions of the variational equation correspond to a periodic structural problem. The elements of the stiffness matrix of homogenized plate are obtained by linear combinations of the averaged solution functions of the above mentioned boundary value problems. Finally, an illustrative example of application of this homogenization technique to hollowed plates and plate structures with ribs patterns regularly arranged over its area is shown. The possibility of using in the profesional practice the present procedure to the actual analysis of floors of typical buildings is also emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato di tesi tratta la valutazione di differenti sistemi di controventatura, sia dal punto di vista di risposta ad un evento sismico che in termini di perdite economiche legate al danneggiamento delle varie componenti. Tra di esse è presentata anche una nuova tipologia strutturale, ideata per ridurre il comportamento “soft-story” e “weak-story”, tipico delle strutture controventate convenzionali. In questo caso, è integrata alla struttura una trave reticolare metallica, che funge da supporto verticale ed è progettata per rimanere in campo elastico. Tale sostegno garantisce una distribuzione più uniforme degli sforzi lungo l’intera altezza della struttura, anziché concentrarli in un unico piano. La ricerca tratta lo studio della fattibilità economica di questa nuova tecnologia, rispetto alle precedenti soluzioni di controventatura adottate, confrontando le perdite economiche delle diverse soluzioni, applicate ad un unico prototipo di edificio collocato a Berkeley, CA. L’analisi sismica tiene in considerazione di tre diversi livelli di intensità, riferiti a un periodo di ritorno di 50 anni, corrispondente alla vita dell’edificio: questi sono caratterizzati dalla probabilità di ricorrenza, rispettivamente del 2%, 10% e 50% ogni 50 anni. L’ambito di ricerca presentato è estremamente innovativo e di primario interesse per lo sviluppo di uno studio sulla resilienza, che può essere adattato anche in un modello di urbanizzazione futura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research project is to study an innovative method for the stability assessment of structural steel systems, namely the Modified Direct Analysis Method (MDM). This method is intended to simplify an existing design method, the Direct Analysis Method (DM), by assuming a sophisticated second-order elastic structural analysis will be employed that can account for member and system instability, and thereby allow the design process to be reduced to confirming the capacity of member cross-sections. This last check can be easily completed by substituting an effective length of KL = 0 into existing member design equations. This simplification will be particularly useful for structural systems in which it is not clear how to define the member slenderness L/r when the laterally unbraced length L is not apparent, such as arches and the compression chord of an unbraced truss. To study the feasibility and accuracy of this new method, a set of 12 benchmark steel structural systems previously designed and analyzed by former Bucknell graduate student Jose Martinez-Garcia and a single column were modeled and analyzed using the nonlinear structural analysis software MASTAN2. A series of Matlab-based programs were prepared by the author to provide the code checking requirements for investigating the MDM. By comparing MDM and DM results against the more advanced distributed plasticity analysis results, it is concluded that the stability of structural systems can be adequately assessed in most cases using MDM, and that MDM often appears to be a more accurate but less conservative method in assessing stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.