531 resultados para Stagnation
Resumo:
Unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point for both cold and hot walls has been studied for the case when the velocity of the incident stream varies arbitrarily with time. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. Computations have been carried out for two particular unsteady free-stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. The results indicate that the variation of the density-viscosity product across the boundary layer, the wall temperature and the nature of stagnation point significantly affect the skin friction and heat transfer.
Resumo:
The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter lambda, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist.
Hypersonic stagnation‐point boundary layers with massive blowing in the presence of a magnetic field
Resumo:
The effect of massive blowing rates on the steady laminar hypersonic boundary‐layer flow of an electrically conducting fluid in the stagnation region of an axisymmetric body with an applied magnetic field has been studied. The governing equations have been solved numerically by combining the implicit finite‐difference scheme with the quasi‐linearization technique. It is observed that the effect of massive blowing rates is to remove the viscous layer away from the boundary, whereas the effect of the magnetic field is just the opposite. It is also found that the velocity overshoot increases with blowing rates and also with magnetic field. The effect of the variation of the density‐viscosity product across the boundary layer is strong only when the blowing rate is small, but for the massive blowing rate the effect is negligible.
Resumo:
The steady laminar compressible boundary layer flow of an electrically conducting fluid in the stagnation region of a sphere with an applied magnetic field has been studied. The effects of the induced magnetic field, mass transfer, and viscous dissipation have been taken into account. Both isothermal and adiabatic wall conditions have been considered. The governing equations have been solved numerically using a shooting method. The skin friction and heat transfer are found to be strongly affected by the magnetic field, mass transfer, wall temperature and Mach number. It is found that the magnetic field reduces the heat transfer. This is a significant result which can be used in controlling the heat transfer rate. The boundary layer solutions break down as the magnetic parameter tends to a certain critical value.
Resumo:
Numerical results are presented for the free-convection boundary-layer equations of the Ostwald de-Waele non-Newtonian power-law type fluids near a three-dimensional (3-D) stagnation point of attachment on an isothermal surface. The existence of dual solutions that are three-dimensional in nature have been verified by means of a numerical procedure. An asymptotic solution for very large Prandtl numbers has also been derived. Solutions are presented for a range of values of the geometric curvature parameter c, the power-law index n, and the Prandtl number Pr.
Unsteady compressible boundary layer flow in the stagnation region of a sphere with a magnetic field
Resumo:
Abstract: An analysis is performed to study the unsteady compressible laminar boundary layer flow in the forward stagnation-point region of a sphere with a magnetic field applied normal, to the surface. We have considered the case where there is an initial steady state that is perturbed by the step change in the total enthalpy at the wall. The nonlinear coupled parabolic partial differential equations governing the flow and heat transfer have been solved numerically using a finite-difference scheme. The numerical results are presented, which show the temporal development of the boundary layer. The magnetic field in the presence of variable electrical conductivity causes an overshoot in the velocity profile. Also, when the total enthalpy at the wall is suddenly increased, there is a change in the direction of transfer of heat in a small interval of time.
Resumo:
The unsteady three-dimensional stagnation point Bow of a viscoelastic fluid has been studied. Both nodal and saddle point regions of How have been considered. The unsteadiness in the Bow field is caused by the free stream velocity which varies arbitrarily with time. The governing boundary layer equations represented by a system of nonlinear partial differential equations have been solved numerically using a finite-difference scheme along with the quasilinearization technique in the nodal point region and a finite-difference scheme in combination with the parametric differentiation technique in the saddle point region. The skin friction coefficients for the viscoelastic fluid are found to be significantly less than those of the Newtonian fluid. The skin friction and heat transfer increase due to suction and reduce due to injection. The heat transfer at the wall increases with the Prandtl number. There is a flow reversal in the y-component of the velocity in the saddle point region. The absolute value of c (<<<0) for which reversal takes place is less than that of the Newtonian fluid. (C) 1997 Elsevier Science Ltd.
Resumo:
The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder is investigated when both the free stream velocity and the velocity of the cylinder vary arbitrarily with time. The cylinder moves either in the same direction as that of the free stream or in the opposite direction. The flow is initially (t = 0) steady and then at t > 0 it becomes unsteady. The semi-similar solution of the unsteady Navier-Stokes equations has been obtained numerically using an implicit finite-difference scheme. Also the self-similar solution of the Navier-Stokes equations is obtained when the velocity of the cylinder and the free stream velocity vary inversely as a linear function of time. For small Reynolds number, a closed form solution is obtained. When the Reynolds number tends to infinity, the Navier-Stokes equations reduce to those of the two-dimensional stagnation-point flow. The shear stresses corresponding to stationary and the moving cylinder increase with the Reynolds number. The shear stresses increase with time for the accelerating flow but decrease with increasing time for the decelerating flow. For the decelerating case flow reversal occurs in the velocity profiles after a certain instant of time. (C) 1999 Elsevier Science Ltd. All rights reserved.