901 resultados para Spinal cord Growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experience of disability in the global South remains relatively underreported in spite of the greater focus on disability as both an impediment to development and frequently as a result of development. This article reports a qualitative study using ethnographic techniques undertaken in the province of Khon Kaen in Northeast Thailand. The primary participants were men who had experienced a severe spinal cord injury at a time when they were breadwinners, a role which is significant in the context of a modernising state that is an active participant in a global economy. The experiences, constructions and beliefs of these men, their family carers, and other informants illustrate the complex ways in which social and cultural factors interact with the opportunities, challenges and constraints of the transition modernity. The findings, interpreted according to the ‘three bodies’ approach, illustrate the intersection of colonising effects, governmentality and resistance, and embodied experience in a cultural context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin(+) Sox2(+) neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium). -- Results: Here we report the isolation and long term propagation of another population of Nestin(+) cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. -- Conclusion: Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Therapy employing epidural electrostimulation holds great potential for improving therapy for patients with spinal cord injury (SCI) (Harkema et al., 2011). Further promising results from combined therapies using electrostimulation have also been recently obtained (e.g., van den Brand et al., 2012). The devices being developed to deliver the stimulation are highly flexible, capable of delivering any individual stimulus among a combinatorially large set of stimuli (Gad et al., 2013). While this extreme flexibility is very useful for ensuring that the device can deliver an appropriate stimulus, the challenge of choosing good stimuli is quite substantial, even for expert human experimenters. To develop a fully implantable, autonomous device which can provide useful therapy, it is necessary to design an algorithmic method for choosing the stimulus parameters. Such a method can be used in a clinical setting, by caregivers who are not experts in the neurostimulator's use, and to allow the system to adapt autonomously between visits to the clinic. To create such an algorithm, this dissertation pursues the general class of active learning algorithms that includes Gaussian Process Upper Confidence Bound (GP-UCB, Srinivas et al., 2010), developing the Gaussian Process Batch Upper Confidence Bound (GP-BUCB, Desautels et al., 2012) and Gaussian Process Adaptive Upper Confidence Bound (GP-AUCB) algorithms. This dissertation develops new theoretical bounds for the performance of these and similar algorithms, empirically assesses these algorithms against a number of competitors in simulation, and applies a variant of the GP-BUCB algorithm in closed-loop to control SCI therapy via epidural electrostimulation in four live rats. The algorithm was tasked with maximizing the amplitude of evoked potentials in the rats' left tibialis anterior muscle. These experiments show that the algorithm is capable of directing these experiments sensibly, finding effective stimuli in all four animals. Further, in direct competition with an expert human experimenter, the algorithm produced superior performance in terms of average reward and comparable or superior performance in terms of maximum reward. These results indicate that variants of GP-BUCB may be suitable for autonomously directing SCI therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paralysis is a debilitating condition afflicting millions of people across the globe, and is particularly deleterious to quality of life when motor function of the legs is severely impaired or completely absent. Fortunately, spinal cord stimulation has shown great potential for improving motor function after spinal cord injury and other pathological conditions. Many animal studies have shown stimulation of the neural networks in the spinal cord can improve motor ability so dramatically that the animals can even stand and step after a complete spinal cord transaction.

This thesis presents work to successfully provide a chronically implantable device for rats that greatly enhances the ability to control the site of spinal cord stimulation. This is achieved through the use of a parylene-C based microelectrode array, which enables a density of stimulation sites unattainable with conventional wire electrodes. While many microelectrode devices have been proposed in the past, the spinal cord is a particularly challenging environment due to the bending and movement it undergoes in a live animal. The developed microelectrode array is the first to have been implanted in vivo while retaining functionality for over a month. In doing so, different neural pathways can be selectively activated to facilitate standing and stepping in spinalized rats using various electrode combinations, and important differences in responses are observed.

An engineering challenge for the usability of any high density electrode array is connecting the numerous electrodes to a stimulation source. This thesis develops several technologies to address this challenge, beginning with a fully passive implant that uses one wire per electrode to connect to an external stimulation source. The number of wires passing through the body and the skin proved to be a hazard for the health of the animal, so a multiplexed implant was devised in which active electronics reduce the number of wires. Finally, a fully wireless implant was developed. As these implants are tested in vivo, encapsulation is of critical importance to retain functionality in a chronic experiment, especially for the active implants, and it was achieved without the use of costly ceramic or metallic hermetic packaging. Active implants were built that retained functionality 8 weeks after implantation, and achieved stepping in spinalized rats after just 8-10 days, which is far sooner than wire-based electrical stimulation has achieved in prior work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. In periphery, they contribute to sensory transmission, including that of nociception and pain. Here we characterized ASIC-like currents in dorsal horn neurons of the rat spinal cord and their functional modulation in pathological conditions. Reverse transcriptase-nested PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are expressed at a high level in dorsal horn neurons. Electrophysiological and pharmacological properties of the proton-gated currents suggest that homomeric ASIC1a and/or heteromeric ASIC1a + 2b channels are responsible for the proton-induced currents in the majority of dorsal horn neurons. Acidification-induced action potentials in these neurons were compatible in a pH-dependent manner with the pH dependence of ASIC-like current. Furthermore, peripheral complete Freund's adjuvant-induced inflammation resulted in increased expression of both ASIC1a and ASIC2a in dorsal horn. These results support the idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental Control Systems (ECS), enable people with high cervical Spinal Cord Injury (high SCI) to control and access everyday electronic devices. In Ireland, however, access for those who might benefit from ECS is limited. This study used a qualitative approach to explore the insider experience of an ECS starter-pack developed by the author, an occupational therapist. The primary research questions: what is it really like to live with ECS, and what does it mean to live with ECS, were explored using a phenomenological methodology conducted in three phases. In Phase 1 fifteen people with high SCI met twice in four focus groups to discuss experiences and expectations of ECS. Thematic analysis (Krueger & Casey, 2000), influenced by the psychological phenomenological approach (Creswell, 1998), yielded three categories of rich, practical, phenomenological findings: ECS Usage and utility; ECS Expectations and The meaning of living with ECS. Phase 1 findings informed Phase 2 which consisted of the development of a generic electronic assistive technology pack (GrEAT) that included commercially available constituents as well as short instructional videos and an information booklet. This second phase culminated in a one-person, three-week pilot trial. Phase 3 involved a six person, 8-week trial of the GrEAT, followed by individual in-depth interviews. Interpretative Phenomenological Analysis IPA (Smith, Larkin & Flowers, 2009), aided by computer software ATLAS.ti and iMindmap, guided data analysis and identification of themes. Getting used to ECS, experienced as both a hassle and engaging, resulted in participants being able to Take back a little of what you have lost, which involved both feeling enabled and reclaiming a little doing. The findings of this study provide substantial insights into what it is like to live with ECS and the meanings attributed to that experience. Several practical, real world implications are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Release of endogenous dynorphin opioids within the spinal cord after partial sciatic nerve ligation (pSNL) is known to contribute to the neuropathic pain processes. Using a phosphoselective antibody [kappa opioid receptor (KOR-P)] able to detect the serine 369 phosphorylated form of the KOR, we determined possible sites of dynorphin action within the spinal cord after pSNL. KOR-P immunoreactivity (IR) was markedly increased in the L4-L5 spinal dorsal horn of wild-type C57BL/6 mice (7-21 d) after lesion, but not in mice pretreated with the KOR antagonist nor-binaltorphimine (norBNI). In addition, knock-out mice lacking prodynorphin, KOR, or G-protein receptor kinase 3 (GRK3) did not show significant increases in KOR-P IR after pSNL. KOR-P IR was colocalized in both GABAergic neurons and GFAP-positive astrocytes in both ipsilateral and contralateral spinal dorsal horn. Consistent with sustained opioid release, KOR knock-out mice developed significantly increased tactile allodynia and thermal hyperalgesia in both the early (first week) and late (third week) interval after lesion. Similarly, mice pretreated with norBNI showed enhanced hyperalgesia and allodynia during the 3 weeks after pSNL. Because sustained activation of opioid receptors might induce tolerance, we measured the antinociceptive effect of the kappa agonist U50,488 using radiant heat applied to the ipsilateral hindpaw, and we found that agonist potency was significantly decreased 7 d after pSNL. In contrast, neither prodynorphin nor GRK3 knock-out mice showed U50,488 tolerance after pSNL. These findings suggest that pSNL induced a sustained release of endogenous prodynorphin-derived opioid peptides that activated an anti-nociceptive KOR system in mouse spinal cord. Thus, endogenous dynorphin had both pronociceptive and antinociceptive actions after nerve injury and induced GRK3-mediated opioid tolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether improvement in quality of semen over 4 consecutive days of electroejaculation in men with chronic spinal cord injury (SCI) was consistent with epididymal necrospermia. DESIGN: Prospective study of a random sample of men with SCI. SETTING: A southeastern Australian SCI management center in collaboration with the specialist andrology service of a university-based department of obstetrics and gynecology in a tertiary referral hospital. PATIENT(S): Nine men with chronic spinal cord injury. INTERVENTION(S): Semen samples were obtained by using electroejaculation, and testicular biopsy samples were obtained by using fine-needle tissue aspiration. MAIN OUTCOME MEASURE(S): Semen analysis was performed according to World Health Organization criteria. Testicular biopsy and electron microscopy were done by using standard techniques. RESULT(S): During up to 4 days of consecutive-day electroejaculation, sperm motility and viability in semen obtained from men with chronic SCI increased by an average of 23% on days 2 and 3. The severity of the degenerative changes and the numbers of spermatozoa affected on day 1 became less marked by day 4. The changes were not present in late spermatids obtained from testicular biopsies. CONCLUSION(S): The asthenospermia of chronic SCI is similar to epididymal necrospermia and can be improved by consecutive-day electroejaculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To present the results of a pilot study of an innovative methodology for translating best evidence about spinal cord injury (SCI) for family practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. The present study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Methods Bladders from SCI (T8/9 transection) and sham-operated rats five-weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Results Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. Conclusions IC populations in bladder wall were decreased five weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There were three objectives to the present study: (1) compare the bladder infection rate and extent of biofilm formation for seven untreated spinal cord injured (SCI) patients and seven given prophylactic co-trimoxazole, (2) identify a level of bacterial adhesion to bladder cells which could be used to help predict symptomatic infection, and (3) determine from in vivo and in vitro studies whether fluoroquinolones were effective at penetrating bacterial biofilms. The results showed that the infection rate had not changed with the introduction of prophylaxis. However, the uropathogenic population had altered subsequent to the introduction of prophylaxis with E. coli being replaced by E. faecalis as the most common cause of infection. In 63% of the specimens from asymptomatic patients, the bacterial counts per cell were <20, while 81% of specimens from patients with at least one sign and one symptom of urinary tract infection (UTI) had > 20 adherent bacteria per bladder cell. Therefore, it is proposed that counts of > 20 bacteria adherent to sediment transitional epithelial bladder cells may be predictive of symptomatic UTI. Clinical data showed that fluoroquinolone therapy reduced the adhesion counts to <20 per cell in 63% of cases, while trimethoprim-sulfamethoxazole only did so in 44%. Further in vitro testing showed that ciprofloxacin (0.1, 0.5 and 1.0 micrograms/ml) partially or completely eradicated adherent biofilms from 92% of spinal cord injured patients' bladder cells, while ofloxacin did so in 71% cases and norfloxacin in 56%. These findings have important implications for the detection and treatment of bacteriuria in spinal cord injured patients.