120 resultados para Spermatozoon
Resumo:
Double aneuploidy, (48,XXY,+21) of maternal origin in a child born to a 13-year-old mother: evoluation of the maternal folate metabolism: The occurrence of non-mosaic double trisomy is exceptional in newborns. In this paper, a 48,XXY,+21 child, the parental origin of the extra chromosomes and the evaluation of the maternal folate metabolism are presented. The infant was born to a 13-year-old mother and presented with the typical clinical features of Down syndrome (DS). The origin of the additional chromosomes was maternal and most likely resulted from errors during the first meiotic division. Molecular analysis of 12 genetic polymorphisms involved in the folate metabolism revealed that the mother is heterozygous for the MTHFR C677T and TC2 A67G polymorphisms, and homozygous for the mutant MTRR A66G polymorphism. The maternal homocysteine concentration was 4.7 mu mol/L, a value close to the one considered as a risk factor for DS in our previous study. Plasma methylmalonic acid and serum folate concentrations were 0.17 mu mol/L and 18.4 ng/mL, respectively. It is possible that the presence of allelic variants for the folate metabolism and Hey concentration might have favored errors in chromosomal disjunction (hiring gametogenesis in this young mother. To our knowledge, this is the first patient with non-mosaic Down-Klinefelter born to a teenage mother, resulting from a rare fertilization event combining an abnormal 25,XX,+21 oocyte and a 23,Y spermatozoon.
Resumo:
La ingeniería genética y la reprogramación de organismos vivos representan las nuevas fronteras biotecnológicas que permitirán generar animales con modificaciones precisas en sus genomas para un sinnúmero de aplicaciones biomédicas y agropecuarias. Las técnicas para inducir modificaciones génicas intencionales en animales, especialmente en especies mayores de interés agropecuario, se encuentran rezagadas si se compara con los avances significativos que se han producido en el área de la transgénesis de roedores de laboratorio, especialmente el ratón. Es así que, el presente proyecto persigue desarrollar y optimizar protocolos para generar embriones bovinos transgénicos para aplicaciones biotecnológicas. La estrategia propuesta, se basa en conseguir la presencia simultánea en el interior celular de una enzima de restricción (I-SceI) más un transgén (formado por casetes de expresión de una proteína fluorescente -ZsGreen1- y neomicina fosfotransferasa). Específicamente, proyectamos estudiar una vía alternativa para generar embriones bovinos transgénicos mediante la incorporación del transgén (casetes ZsGreen1 y neo) flanqueado por sitios I-SceI más la enzima I-SceI al interior del ovocito junto con el espermatozoide durante la técnica conocida como inyección intracitoplasmática de espermatozoides (ICSI). Los embriones así generados se cultivarán in vitro, inspeccionándolos diariamente para detectar la emisión de fluorescencia, indicativa de la expresión de la proteína ZsGreen1. Los embriones que alcancen el estado de blastocisto y expresen el transgén se transferirán quirúrgicamente al útero de ovejas sincronizadas y se mantendrán durante 7 días. Al cabo de este período, los embriones se recolectarán quirúrgicamente del útero ovino y se transportarán al laboratorio para determinar el número de sitios de integración y número de copias del transgén mediante el análisis de su ADN por Southern blot. Se prevé que los resultados de esta investigación permitirán sentar las bases para el desarrollo de métodos eficientes para obtener modificaciones precisas en el genoma de los animales domésticos para futuras aplicaciones biotecnológicas. Genetic engineering and reprogrammed organisms represent the new biotechnological frontiers which will make possible to generate animals with precise genetic modifications for agricultural and biomedical applications. Current methods used to generate genetically modified large animals, lay behind those used in laboratory animals, specially the mouse. Therefore, we seek to develop and optimize protocols to produce transgenic bovine embryos through the use of a non-viral vector. The strategy involves the simultaneous presence inside the cell of a restriction enzyme (I-SceI) and a transgene (carrying cassettes for a fluorescent protein -ZsGreen1- and neomycin phosphotransferase) flanked by restriction sites for the endonuclease. We plan to develop an alternative approach to generate transgenic bovine embryos by coinjecting the transgene flanked by I-SceI restriction sites plus the enzyme I-SceI along with the spermatozoon during the technique known as intracytoplasmic sperm injection (ICSI). Embryos will be cultured in vitro and inspected daily with a fluorescence microscope to characterize transgene expression. Embryos that reach the blastocyst stage and express the transgene will be surgically transfer to the uterus of a synchronized ewe. After 7 days, the embryos will be flushed out the ovine uterus and transported to the laboratory to determine the number of integration sites and transgene copies by Southern blot. We anticipate that results from this research will set the stage for the development of efficient strategies to achieve precise genetic modifications in large domestic animals for future biotechnological applications.
Resumo:
In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.
Resumo:
At present not only is the site of fertilization in ticks still unknown but it is also unclear as to how this mystery can be solved. Signs of fertilization can be observed throughout the female genital tract and these can be clues for the elucidation of the unsolved questions relating to ticks fertilization. In Boophilus microplus (Canestrini, 1887) the most important signs are the following: the final eversion of the acrosomal canal in females ready for oviposition; the presence of small tubules, resembling the subplasmalemal process of the spermatozoon between the oviduct cells; budding nuclei throughout the female genital tract; and the two Feulgen and DAPI positive areas in the oocyte at vitelogenesis. These morphological characteristics suggest that fertilization takes place in the internal cylinder which extends from the uterus to the ovary itself.
Resumo:
Ultrastructural aspects of spermatogenesis, spermiogenesis and of the mature spermatozoon of a microcotylid monogenean Metamicrocotyla macracantha parasite from Mugil liza, are described. The irregularly-shaped spermatogonia divides by successive mitoses, forming the primary spermatocytes, identified by the presence of synaptonemal complexes in their nuclei. The spermatids formed by meiotic cell divisions of the secondary spermatocytes, differentiate into a mature spermatozoon. Cross sections of the head and the middle region of mature spermatozoa show the nucleus with strong condensed chromatin, the mitochondria with short cristae, peripheral microtubules and two axonemes with a 9+1 pattern, confirming the characteristics of this genus.
Resumo:
This study describes spermatogenesis in a majid crab (Maja brachydactyla) using electron microscopy and reports the origin of the different organelles present in the spermatozoa. Spermatogenesis in M. brachydactyla follows the general pattern observed in other brachyuran species but with several peculiarities. Annulate lamellae have been reported in brachyuran spermatogenesis during the diplotene stage of first spermatocytes, the early and mid-spermatids. Unlike previous observations, a Golgi complex has been found in midspermatids and is involved in the development of the acrosome. The Golgi complex produces two types of vesicles: light vesicles and electron-dense vesicles. The light vesicles merge into the cytoplasm, giving rise to the proacrosomal vesicle. The electron-dense vesicles are implicated in the formation of an electron-dense granule, which later merges with the proacrosomal vesicle. In the late spermatid, the endoplasmic reticulum and the Golgi complex degenerate and form the structures–organelles complex found in the spermatozoa. At the end of spermatogenesis, the materials in the proacrosomal vesicle aggregate in a two-step process, forming the characteristic concentric three-layered structure of the spermatozoon acrosome. The newly formed spermatozoa from testis show the typical brachyuran morphology.
Resumo:
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup-shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures-organelles complex (SO-complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO-complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO-complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus.
Resumo:
The present work constitutes the first ultrastructural analysis of the spermatozoon in the Pleurogenidae, with the study of three species belonging to three of the 16 genera included in this family, namely Pleurogenes claviger, Pleurogenoides medians and Prosotocus confusus. The mature spermatozoa of these pleurogenids present two axonemes of the 9+'1' trepaxonematan pattern, a nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation, spine-like bodies and granules of glycogen. The organization of these characters in the sperm cell is similar in the three species. Thus, the anterior spermatozoon extremity is filiform and a continuous and submembranous layer of parallel cortical microtubules surrounds the axonemes at their anterior end. The posterior spermatozoon extremity exhibits the second axoneme and corresponds to the Cryptogonimidean type of Quilichini et al. (2010). Slight differences were noted between the spermatozoon of P. confusus and those of the two remaining species in the location of mitochondria.
Resumo:
We investigated whether chronic stress applied from prepuberty to full sexual maturity interferes with spermatogenic and androgenic testicular functions. Male Wistar rats (40 days old) were immobilized 6 h a day for 60 days. Following immobilization, plasma concentrations of corticosterone and prolactin increased 135% and 48%, respectively, while plasma luteinizing hormone and testosterone presented a significant decrease of 29% and 37%, respectively. Plasma concentration of follicle-stimulating hormone was not altered in stressed rats. Chronic stress reduced the amount of mature spermatids in the testis by 16% and the spermatozoon concentration in the cauda epididymidis by 32%. A 17% reduction in weight and a 42% decrease in DNA content were observed in the seminal vesicle of immobilized rats but not in its fructose content. The growth and secretory activity of the ventral prostate were not altered by chronic stress.
Resumo:
El present treball analitza la morfologia espermàtica de l'ejaculat de Sus domesticus, la histologia del conducte epididimari i la qualitat de l'esperma epididimari. El material d'estudi prové de mascles reproductors porcins de les races Landrace i Pietrain, sans i sexualment madurs. La metodologia emprada es basa en l'examen al microscopi òptic (camp dar, contrast de fases i contrast interferencial) i al microscopi electrònic (de rastreig i de transmissió). Per a l'anàlisi estadística de les dades s'ha utilitzat el test de la X2 de Pearson (p<0,01). L'estudi de la morfologia espermàtica de l'ejaculat permet distingir diversos tipus de gàmetes que s'han classificat en tres grups: espermatozoides madurs, espermatozoides immadurs i espermatozoides aberrants, així com algunes cèI.lules somàtiques. L'espermatozoide madur de Sus domesticus és un gàmeta típic de mamífer (format per tres parts: cap, peça de connexió i cua) en que destaquen: la forma oval i plana del cap, el desenvolupament d'una protuberància acrosòmica apical en una de les cares del cap i la presencia dels cossos laminars en la peça de connexió. L'espermatozoide immadur es caracteritza per la presencia de la gota citoplasmàtica, el major desenvolupament de la protuberància acrosòmica apical i per la flexibilitat del cap. Els espermatozoides aberrants es descriuen i classifiquen segons la morfologia externa i la morfologia interna, distingint-se una amplia gama de malformacions que afecten les diverses parts de l'espermatozoide. Les cèl·lules somàtiques presents en l'ejaculat ofereixen les característiques pròpies d'un macròfag i se les ha observat englobant espermatozoides immadurs. L'estudi de l'estructura i la ultraestructura de les tres regions anatòmiques de l'epidídim (caput, corpus i cauda) revela que: a) l'epiteli epididimari és pseudoestratificat amb esterocilis, b) cada regió epididimària presenta uns valors característics en relació al diàmetre intern del conducte, a l'alçada de l'epiteli, a la longitud dels esterocilis i al nombre de cèl·lules somàtiques luminals, i c) l'epiteli epididimari esta format per cinc tipus cel·lulars: les cèl·lules principals, les cèl·lules basals, les cèl·lules dares, les cèl·lules estretes i les cèl·lules basòfiles. Dels resultats obtinguts es pot deduir que: a) aquests cinc tipus cel·lulars es distribueixen al llarg del conducte epididimari de forma no homogènia, b) les cèl·lules basals, les cèl·lules principals, les cèI.Iules dares i les cèl·lules estretes són diversos estadis del desenvolupament d'un mateix tipus cel·lular especialitzat en la secreció i reabsorció cel·lular, i c) les cèl·lules basòfiles són les precursores de les cèl·lules somàtiques luminals. La qualitat de l'esperma procedent de les tres regions de l'epidídim ha estat analitzada a partir dels següents paràmetres espermàtics: vitalitat, resistència osmòtica dels acrosomes, estabilitat cefàlica, morfologia, malformacions i aglutinació. La vitalitat espermàtica disminueix progressivament al llarg del conducte epididimari. La resistència osmòtica dels acrosomes s'assoleix en la regió corporal de l'epidídim. L'estabilitat cefàlica dels espermatozoides és més elevada en les dues primeres regions de l'epidídim que en la regió caudal. Cada regió de l'epidídim es caracteritza per una morfologia espermàtica específica: a) el caput es caracteritza per l'elevat percentatge d'espermatozoides immadurs amb gota citoplasmàtica proximal, b) el corpus es caracteritza per l'elevat percentatge d'espermatozoides immadurs amb gota citoplasmàtica distal, i c) el cauda es caracteritza per l'elevat percentatge d'espermatozoides madurs. S'han estudiat les següents malformacions d'origen epididimari: espermatozoides de cua doblegada per l'anell de Jensen (origen en el cauda), espermatozoides de cua enrotllada i espermatozoides de cues fusionades (origen en el corpus). Els espermatozoides perden la capacitat de doblegar la cua per la peça intermèdia a mesura que avancen pel conducte epididimari. L'aglutinació espermàtica tendeix a augmentar progressivament al llarg del conducte epididimari, si bé, no s'han observat variacions significatives en els diversos tipus d'aglutinació. La maduració epididimaria dels espermatozoides de Sus domesticus és un procés lent i complex, i la qualitat de l'ejaculat depèn de que aquesta maduració hagi estat completa. La presencia en l'esperma ejaculat de formes gamètiques pròpies de l'esperma epididimari és un signe d'una incompleta maduració dels espermatozoides; i, pot considerar-se com un paràmetre indicador d'estrés del mascle reproductor, tant més quant més s'assembli a la morfologia espermàtica de la regió cefàlica de l'epidídim.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to determine the extent of DNA fragmentation and the presence of denatured single-strand or normal double-strand DNA in spermatozoa with extruded nuclear chromatin (ENC) selected by high magnification. Fresh semen samples from 55 patients were prepared by discontinuous isolate concentration gradient. Spermatozoa with normal nucleus (NN) and ENC were selected at 8400x magnification and placed on different slides. DNA fragmentation was determined by TUNEL assay. Denatured and double-stranded DNA was identified by the acridine orange fluorescence method. DNA fragmentation was not significantly different (p = 0.86) between spermatozoa with ENC (19.6%) and those with NN (20%). However, the percentage of spermatozoa with detectable denatured-stranded DNA in the ENC spermatozoon group (59.1%) was significantly higher (p < 0.0001) than in the NN group (44.9%). The high level of denatured DNA in spermatozoa with ENC suggests premature decondensation and disaggregation of sperm chromatin fibres. The results show an association between ENC and DNA damage in spermatozoa, and support the routine morphological selection and injection of motile spermatozoa at high-magnification intracytoplasmic sperm injection.
Resumo:
Background: Although the motile sperm organelle morphology examination (MSOME) was developed only as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in evaluation of semen quality, with potential clinical repercussions. The present study aimed to evaluate individual variations in the motile sperm organelle morphology examination (MSOME) analysis after a time interval.Methods: Two semen samples were obtained from 240 men from an unselected group of couples undergoing infertility investigation and treatment. Mean time interval between the two semen evaluations was 119 +/- 102 days. No clinical or surgical treatment was realized between the two observations. Spermatozoa were analyzed at greater than or equal to 8400 x magnification by inverted microscope equipped with DIC/Nomarski differential interference contrast optics. At least 200 motile spermatozoa per semen sample were evaluated and percentages of normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV/one or more vacuoles occupying >50% of the sperm nuclear area) were determined. A spermatozoon was classified as morphologically normal when it exhibited a normal nucleus (smooth, symmetric and oval nucleus, width 3.28 +/- 0.20 mu m, length 4.75 +/- 0.20 mu m/absence of vacuoles occupying >4% of nuclear area) as well as acrosome, post-acrosomal lamina, neck and tail, besides not presenting cytoplasm around the head. One examiner, blinded to subject identity, performed the entire study.Results: Mean percentages of morphologically normal and LNV spermatozoa were identical in the two MSOME analyses (1.6 +/- 2.2% vs. 1.6 +/- 2.1% P = 0.83 and 25.2 +/- 19.2% vs. 26.1 +/- 19.0% P = 0.31, respectively). Regression analysis between the two samples revealed significant positive correlation for morphologically normal and for LNV spermatozoa (r = 0.57 95% CI: 0.47-0.65 P < 0.0001 and r = 0.50 95% CI: 0.38-0.58 P < 0.0001, respectively).Conclusions: The significant positive correlation and absence of differences between two sperm samples evaluated after a time interval with respect to normal morphology and LNV spermatozoa indicated that MSOME seems reliable (at least for these two specific sperm forms) for analyzing semen. The present result supports the future use of MSOME as a routine method for semen analysis.
Resumo:
A espermiogênese que ocorre em piracanjuba Brycon orbignyanus pode ser dividida em quatro etapas morfológicas, cujas características principais consistem em reduções dos volumes citoplasmático, nuclear e celular, e compactação da cromatina nuclear das espermátides, sendo que as etapas espermiogenéticas ocorrem simultaneamente. Ao final da espermiogênese, quando as espermátides atingem nível elevado de diferenciação, os núcleos se tornam mais compactos e os citoplasmas se tornam reduzidos. Estas modificações resultam na formação de células altamente diferenciadas, os espermatozóides com cabeça, peça intermediária e flagelo bem definidos. As espermátides e os espermatozóides foram observados em cistos germinativos, mas também podem ser encontrados na luz dos túbulos seminíferos.