70 resultados para Spermatid
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os dados obtidos no presente estudo sobre a ultraestrutura da espermiogênese e dos espermatozóides de Pseudopimelodidae e Heptapteridae mostram que eles compartilham algumas características, mas são bastante diferentes uns dos outros. As principais diferenças são a ocorrência de espermiogênese do tipo I em Pseudopimelodidae e do tipo III em Heptapteridae, a presença de fossa nuclear em Pseudopimelodidae e sua ausência em Heptapteridae, a presença de uma peça intermediária longa em Pseudopimelodidae e uma peça intermediária curta em Heptapteridae, a presença de um canal citoplasmático em Pseudopimelodidae e sua ausência em Heptapteridae, a presença de muitas vesículas grandes na peça intermediária de Pseudopimelodidae, e a presença de vesículas muito alongadas e dispostas em posição periférica distal em Heptapteridae e mitocôndrias distribuídas em toda a peça intermediária de Pseudopimelodidae e muito próximas ao núcleo em Heptapteridae. Heptapteridae e Pimelodidae compartilham várias características como a espermiogênese do tipo III, o mesmo padrão de condensação da cromatina e a ausência de fossa nuclear e projeções laterais ou fins. O espermatozóide de Pseudopimelodidae é mais similar aos dos Siluridae, porém a ausência de dados adicionais sobre a espermiogênese e o espermatozóide de outros siluriformes ainda limitam uma discussão mais ampla na ordem.
Resumo:
Em Corydoradinae, a presença de espermátides junto com espermatozóides no lúmen dos túbulos testiculares sugere uma espermatogênese do tipo semicística, enquanto que em Callichthyinae a produção do esperma ocorre inteiramente dentro dos espermatocistos no epitélio germinativo, caracterizando a espermatogênese cística. A espermiogênese em Callichthyinae é caracterizada por um desenvolvimento inicial lateral do flagelo, pela presença de rotação nuclear em diferentes graus, formação de uma fossa nuclear excêntrica ou medial, formação de um canal citoplasmático, e presença de migração centriolar, sendo mais similar à espermiogênese do tipo I. em Corydoradinae, a espermiogênese é caracterizada pelo desenvolvimento excêntrico do flagelo, ausência de rotação nuclear, fossa nuclear excêntrica, formação de um canal citoplasmático, e ausência de migração centriolar, diferindo dos tipos descritos previamente. O processo de espermatogênese e espermiogênese em Corydoradinae e Callichthyinae revelaram caracteres únicos para cada subfamília, corroborando a hipótese de que as mesmas constituem grupos monofiléticos. em relação à ultraestrutura do esperma, a análise comparativa das espécies de Callichthyidae mostra que as características gerais encontradas nos espermatozóides foram similares, reforçando a hipótese de monofilia da família.
Resumo:
We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 ± 1.25 s for control males vs 26.0 ± 1.53 s for stressed males, P = 0.0004). No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 ± 5.41 vs 127.02 ± 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001). These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.
Resumo:
Spermatogenesis was analysed in a cricket, Eneoptera surinamensis (Gryllidae, Orthoptera), using ultrathin serial sections and transmission electron microscopy. Special attention was placed on documentation of the development and structure of synaptonemal polycomplexes (PCs) within spermatid nuclei. Pachytene spermatocytes showed the usual tripartite synaptonemal complexes in the nuclear lumen. PCs were situated close to chromosomes at the periphery of spindles in prometaphase I spermatocytes, where microtubule density was low. The PCs are probably incorporated into the daughter nuclei of both meiotic divisions by adhesion to chromosomes. Finally, PCs end up within spermatid nuclei. Analysis of serial sections through three nuclei of young spermatids revealed at least one PC within each. The PCs were intimately attached to an electrondense spherical nuclear body. This topographical correlation was confirmed through inspection of random sections. The PCs may have an affinity to the spherical bodies. In more developed spermatids, PCs and nuclear bodies were missing. Disassembly products of the PCs may play a role in spermatid maturation. In a series of other Orthoptera species, PCs have been reported to occur in the cytoplasm or the nuclei of spermatids. In most other systematic groups, PCs do not form at all or disassemble earlier. The presence of PCs in young spermatids, therefore, seems to be typical of Orthoptera.
Resumo:
During spermiogenesis, the spermatids of the pimelodid species Pimelodus maculatus and Pseudoplatystoma fasciatum show a central flagellum development, no rotation of the nucleus, and no nuclear fossa formation, in contrast to all previously described spermatids of Teleostei. These characteristics are interpreted as belonging to a new type of spermiogenesis, named here type III, which is peculiar to the family Pimelodidae. In P. maculatus and P. fasciatum, spermatozoa possess a spherical head and no acrosome; their nucleus contains highly condensed, homogeneous chromatin with small electron-lucent areas; and a nuclear fossa is not present. The centriolar complex lies close to the nucleus. The midpiece is small, has no true cytoplasmic channel, and contains many elongate and interconnected vesicles. Several spherical to oblong mitochondria are located around the centriolar complex. The flagellum displays the classical axoneme (9 + 2) and no lateral fins. Only minor differences were observed among the pimelodid species and genera. Otherwise, spermiogenesis and spermatozoa in the two species of Pimelodidae studied exhibit many characteristics that are not found in other siluriform families, mainly the type III spermiogenesis. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
During mitotic and meiotic divisions in Dermatobia hominis spermatogenesis, the germ cells stay interlinked by cytoplasm, bridges as a result of incomplete cytokinesis. By the end of each division, cytoplasmic bridges flow to the center of the cyst, forming a complex, called the fusoma. During meiotic prophase I, spermatocytes I present desmosome-like junctions and meiotic cytoplasmic bridges. At the beginning of spermiogenesis, the fusoma moves to the future caudal end of the cyst, and at this time the early spermatids are linked by desmosome-like junctions. Throughout spermiogensis, new and sometimes broad cytoplasmic bridges are formed among spermatids at times making them share cytoplasm. In this case the individualization of cells is assured by the presence of smooth cisternae that outline then structures The more differentiated spermatids have in addition to narrow cytoplasmic bridges, plasmic membranes junctions. By the end of spermiogenesis the excess cytoplasmic mass is eliminated leading to spermatid individualization. Desmosome-like junctions of spermatocytes I and early spermatids appear during the fusoma readjustment and segregations; on the other hand, plasmic membrane junctions appear in differentiating spermatids and are eliminated along with the cytoplasmic excess. These circumstances suggest that belt desmosome-like and plasmic membrane junctions are involved in the maintenance of the relative positions of male germ cells in D. hominis while they are inside the cysts. © 1996 Wiley-Liss, Inc.
Resumo:
The spermiogenesis and the spermatozoon ultrastructure of Sorubim lima were studied. Our observations showed that early spermatids are round-shaped cells, have spherical nucleus with diffuse chromatin, small quantity of mitochondria and large amount of vesicles in the cytoplasm. During the differentiation process in the nucleus, chromatin compacts in a progressive and homogeneous way, and the flagellum is formed. In the cytoplasm the vesicles, that have double membranes, aggregate and fuse on the plasma membrane. The spermatozoa of 5. lima have no acrosome and show spherical nucleus with homogeneous and highly compacted chromatin, intermediary piece with mitochondria and double wall vesicles contiguous to the plasma membrane, as well as a flagellum formed by a basic axoneme (9 + 2).
Resumo:
Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.
Resumo:
The Mongolian gerbil (Meriones unguiculatus) is a small rodent native to the arid regions of Mongolia and Northeastern China. The present study provides descriptions of both the cellular associations of the seminiferous-epithelium cycle and relative frequencies of stages in the gerbil. Based on the development of the acrosomic system and the nuclear morphology changes using the PAS-H staining technique, the transformation of spermatids into spermatozoa was divided into 15 steps. The first 12 steps were used to identify 12 stages or cellular associations and the other three steps were spread among the first six stages of the cycle of the seminiferous epithelium. The relative frequencies found for stages I through XII were: 13.15; 8.06; 8.98; 6.48; 5.37; 6.71; 7.36; 7.45; 7.27; 5.83; 11.53 and 11.81, respectively. Stage I had the highest frequency while stage V proved the lowest frequency among the XII stages. The pattern of spermatogenesis is similar to those of rodents used as laboratory animals. The present description is the first for this rodent and provides the foundation for a variety of future studies of the testis in this animal. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigated the effects of an inhalatory anesthetic (ethyl ether) during the neonatal period of brain sexual differentiation on the later fertility and sexual behavior of male rats. Animals were exposed to ethyl ether immediately after birth. At adulthood, body weight, testes wet weight, and plasma testosterone levels were not affected; however, neonatal exposure to ether showed alterations on male fertility: a decrease in the number of spermatids and spermatozoa, an increase in the transit time of cauda epididymal spermatozoa and a decrease in daily sperm production. An alteration of sexual behavior was also observed: decreased male sexual behavior and appearance of homosexual behavior when the male rats were castrated and pretreated with exogenous estrogen. Probably, the ether delayed or reduced the testosterone peak of the sexual differentiation period, altering the processes of masculinization and defeminization of the hypothalamus. Our results indicate that perinatal exposure to ethyl ether during the critical period of male brain sexual differentiation, acting as endocrine disruptors, has a long-term effect on the fertility and sexual behavior of male rats, suggesting endocrine disruption through incomplete masculinization and defeminization of the central nervous system. © 2002 Elsevier B.V. All rights reserved.
Resumo:
Toluidine Blue dye containing increasing concentrations of Mg2+ or Ca2+ can show loss of metachromacy at a certain concentration of the inorganic cation when staining DNA-protein complexes in vitro and in vivo. This process has been named Critical Electrolyte Concentration (CEC) and is applied to the study of protein-nucleic acid complexes at different stages of chromatin supra-organization. Male gametocytes of the species Pseudonannolene tocaiensis were studied, observing a large amount of ribonucleoproteins in the gametocytes cytoplasm throughout prophase I. The nucleolus is maintained during most of the prophase. The highly condensed region showing the bouquet formation appeared stained with the typical tonality for chromatin; this region corresponds to the constitutive heterochromatin. We also observed the presence of RNA all through the chromosomes in prophase I. The permanence of this material surrounding the chromosomes during male meiosis is difficult to explain, since a great reduction of the products of spermatogenesis occurs due to the fact that most of the material of the spermatozoids is not used during fecundation. However, in P. tocaiensis this material is remains even at the spermatids. It is known that during the spermiogenesis of certain insects, RNA synthesis continues at the spermatid, being subsequently eliminated from the nucleus and then from the cell due to the elongation of the nucleus. Therefore, we could suggest that permanence of this material (RNA) during meiosis has a function in the process of cell division.
Resumo:
In this present study was observed that the spermatids underwent morphological differentiation and modifications, which primarily comprised nuclear elongation, during the process of spermiogenesis in the domestic duck. The acrosome was formed and the flagellum developed concomitantly with nuclear modifications. Thus, various modifications could be observed during this process, especially changes in the distribution of cytoplasmic organelles. Long cisternae of the rough endoplasmic reticulum present in the spermatid cytoplasm dissociated into vesicles and the distal centriole initiated the development of the flagellum in the cellular portion opposite to the acrosome. The ultrastructure of the spermatids of the domestic duck did not show the characteristic development of pre-acrosomal granules, but the acrosomal granule could be directly visualized in this species. © 2005 Blackwell Verlag.
Resumo:
The nucleolus is a subcompartment of the nucleus and the site of ribosome biogenesis. During the mitotic and meiotic cell cycles, a disorganization and later reorganization of the nucleolar material occur, an event called nucleologenesis. In the spermatogenesis of mammals and other vertebrates, there is evidence of the disorganization of the nucleolus at the end of meiosis I, which supplies material for the cytoplasmic formation of an organelle called the chromatoid body (CB). The CB is a structure characteristic of spermatogenic cells and seems to be responsible for RNA metabolism in these cells and for some events of spermiogenesis, such as the formation of the acrosome, cellular communication between spermatids, and the formation of the spermatozoon middle piece and tail. The aim of this paper was to obtain information about the cytochemical and ultrastructural nature of the nucleolar cycle and the distribution of cytoplasmic RNAs in the seminiferous tubule cells of Rattus novergiucus, Mus musculus and Meriones unguiculatus. The testis was fixed in Bouin and Karnovsky solutions for conventional histological analysis and for cytochemical study that included: periodic acid-Schiff, hematoxylin-eosin, Feulgen reaction, silver-ion impregnation, Gomori's reticulin stain, toluidine blue, modified method of critical electrolyte concentration, and basic and acid fast green. The blocks of testis fixed in glutaraldehyde were used for ultrastructural analysis by transmission electron microscopy. Ultrathin sections were double-stained with uranyl acetate and lead citrate. All the techniques used provided information on the origin and function of the CB in the spermatogenic cells. Therefore, considering the persistence of the RNA and nucleolar ribonucleoproteins during spermatogenesis of Rattus novergicus, Mus musculus and Meriones unguiculatus, our findings corroborate the statement that these molecular complexes are very important in the spermiogenesis phases. It can be suggested that these ribonucleoprotein corpuscles (chromatoid bodies) are of nuclear origin and have a role in the successive series of events that occur in the formation of the spermatozoon. Furthermore, these results reinforce the conservation of the mechanisms involved in preserving necessary levels of protein stocks in different stages of cell differentiation, from spermatid to spermatozoon, in these rodent species. ©FUNPEC-RP.