900 resultados para Spectral peak track
Resumo:
Acute otitis media (AOM) is the most prevalent bacterial infection among children. Tympanometry and spectral gradient acoustic reflectometry (SG-AR) are adjunctive diagnostic tools to pneumatic otoscopy. The aim was to investigate the diagnostic accuracy and success rates of tympanometry and SG-AR performed by physicians and nurses. The study populations comprised 515 (I-II), 281 (III), and 156 (IV) outpatients (6-35 months). Physicians performed 4246 tympanometric (I) and SG-AR (II) examinations. Nurses performed 1782 (III) and 753 (IV) examinations at symptomatic and asymptomatic visits, respectively. Pneumatic otoscopy by the physician was the diagnostic standard. The accuracy of test results by physicians or nurses (I-IV) and the proportion of visits with accurate exclusive test results from both ears (III-IV) were analyzed. Type B tympanogram and SG-AR level 5 (<49˚) predicted middle ear effusion (MEE). At asymptomatic visits, type A and C1 tympanograms (peak pressure > -200 daPa) and SG-AR level 1 (>95˚) indicated healthy middle ear. Negative predictive values of type A and C1 tympanograms by nurses in excluding AOM at symptomatic and MEE at asymptomatic visits were 94% and 95%, respectively. Nurses obtained type A or C1 tympanogram from both ears at 94/459 (20%) and 81/196 (41%) of symptomatic and asymptomatic visits, respectively. SG-AR level 1 was rarely obtained from both ears. Type A and C1 tympanograms were accurate in excluding AOM at symptomatic and MEE at asymptomatic visits. However, nurses obtained these tympanograms from both ears only at one fifth of symptomatic visits and less than half of asymptomatic visits.
Resumo:
Optical absorption characteristics of rat blood affected by diabetes has been studied using photoacoustic (PA) technique. PA spectrum of blood depends on the molecular structure of haemoglobin. The peak value ratio ylQ increases with increase in the diabetic state. Externally added glucose to normal blood does not show any increase in y//3 ratio as seen in the diabetic condition . The increase in yl,8 ratio may be due to the decrease in DPG level and the resultant shift from R -> T conformation of majority of diabetic haemoglobin.
Resumo:
The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.
Resumo:
The annealing effect on the spectral and nonlinear optical NLO characteristics of ZnO thin films deposited on quartz substrates by sol-gel process is investigated. As the annealing temperature increases from 300–1050 °C, there is a decrease in the band gap, which indicates the changes of the interface of ZnO. ZnO is reported to show two emission bands, an ultraviolet UV emission band and another in the green region. The intensity of the UV peak remains the same while the intensity of the visible peak increases with increase in annealing temperature. The role of oxygen in ZnO thin films during the annealing process is important to the change in optical properties. The mechanism of the luminescence suggests that UV luminescence of ZnO thin films is related to the transition from conduction band edge to valence band, and green luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies. The NLO response of these samples is studied using nanosecond laser pulses at off-resonance wavelengths. The nonlinear absorption coefficient increases from 2.9 ×10−6 to 1.0 ×10−4 m/W when the annealing temperature is increased from 300 to 1050 °C, mainly due to the enhancement of interfacial state and exciton oscillator strength. The third order optical susceptibility x(3) increases with increase in annealing temperature (T) within the range of our investigations. In the weak confinement regime, T2.4 dependence of x(3) is obtained for ZnO thin films. The role of annealing temperature on the optical limiting response is also studied.
Resumo:
ZnS: Cu: Cl phosphor prepared under a vacuum firing process is found to give blue electroluminescence with emission peak at 460 nm which remams unaltered with the frequency of the excitation voltage. Addition of excess chlorine in the phosphor gives blue, green and red emission at 460, 520 and 640 run. The intensity of the blue band decreases and It fmally disappears as chlorine concentration is increased. A scheme involving three energy levels attributed to Cu2+, Cu+ and Cl- centres in Zns explains the experimental results completely.
Resumo:
The design and manufacture of the band-defining filters and their associated dichroic beam splitter for the 11- and the 12-µm infrared channels of the advanced along-track scanning radiometer are described. The filter requirements that have led to the choice of coating designs, coating materials, disposition of coatings, and effects of polarization are discussed. Overall spectral throughputs of the filter and dichroic interaction for the two channels are also presented.
Resumo:
Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves.
Resumo:
Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n 5 60 to n 5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.
Resumo:
A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the postmidnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms−1) exists poleward of a region of low HF spectral width (<200 ms^{−1}). Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated substorm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT) on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms−1) have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiplepeak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the regions of high spectral width are observed both on closed and open field lines the use of the boundary between low and high spectral width as an ionospheric proxy for the open/closed field line boundary is not a simple matter, if indeed it is possible at all.
Resumo:
Reliable spectral analysis is only achieved if the spectrum is thoroughly investigated in regard to all hidden and overlapped peaks. This paper describes the steps undertaken to find and separate such peaks in the range of 3000 to 4000 cm(-1) in the case of three different infrared absorption spectra of the glass surface of hydrolyzed silica optical fibers. Peak finding was done by the analysis of the second and fourth derivatives of the digital data, coupled with the available knowledge of infrared spectroscopy of silica-water interaction in the investigated range. Peak separation was accomplished by curve fitting with four different models. The model with the best fit was described by a sum of pure Gaussian peaks. Shoulder limit and detection limit maps were used to validate the revealed spectral features.
Resumo:
Fireflies emit flashes in the green-yellow region of the spectrum for the purpose of sexual attraction. The bioluminescence color is determined by the luciferases. It is well known that the in vitro bioluminescence color of firefly luciferases can be shifted toward the red by lower pH and higher temperature; for this reason they are classified as pH-sensitive luciferases. However, the mechanism and structural origin of pH sensitivity in fireflies remains unknown. Here we report the cloning of a new luciferase from the Brazilian twilight active firefly Macrolampis sp2, which displays an unusual bimodal spectrum. The recombinant luciferase displays a sensitive spectrum with the peak at 569 nm and a shoulder in the red region. Comparison of the bioluminescence spectra of Macrolampis, Photinus and Cratomorphus firefly luciferases shows that the distinct colors are determined by the ratio between green and red emitters under luciferase influence. Comparison of Macrolampis luciferase with the highly similar North American Photinus pyralis luciferase (91%) showed few substitutions potentially involved with the higher spectral sensitivity in Macrolampis luciferase. Site-directed mutagenesis showed that the natural substitution E354N determines the appearance of the shoulder in the red region of Macrolampis luciferase bioluminescence spectrum, helping to identify important interactions and residues involved in the pH-sensing mechanism in firefly luciferases. © 2005 American Society for Photobiology.
Resumo:
The purpose of this randomized study was to evaluate EMG spectral, subjective and cardiovascular recovery parameters after isometric lumbar extension contractions. Ten healthy women performed isometric lumbar extensions until exhaustion with 5%, 10%, 15% and 20% of maximal voluntary isometric contraction on 4 different days (random order). One baseline five second contraction was performed before the fatiguing task which was followed by eight submaximal five second extension contractions (until 20 minutes after the end of the fatiguing task) at the same intensity as the trial to evaluate muscle recovery. EMG (Median Frequency, Peak Power, Peak Power Frequency, Total Power and Zero-crossing Rate) and cardiovascular variables did not demonstrate any statistical difference between the 5-second contractions (p > 0.05) performed before and after the fatiguing task, showing a quick EMG recovery. However, the data analysis showed that the perceived effort variable had not recovered even 10 minutes after the fatigue contraction (p < 0.05). Our results represent a data basis for future comparisons and since subjective felling can affect performance, this study shows the importance of its analysis, since the subjective effort rate was not fully recovered after 10 minutes the end of the exhaustion contraction. © 2008 IOS Press. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PTFE foils were irradiated with different ion beams (Xe, Au and U) with energies up to 1.5 GeV and fluences between 1 x 10(8) and 1 x 10(13) ions/cm(2) at room temperature. The induced modifications in the polymer were analyzed by FTIR, UV-Vis spectroscopy, and XRD. In the FTIR spectra, the CF2 degradation accompanied by the formation of CF3 terminal and side groups were observed. In the UV-Vis spectra, the observed increase in the absorption at UV wavelengths is an indication of polymer carbonization. From XRD, the amorphization of the material was evidenced by the decrease in the intensity of the main diffraction peak. An exponential fit of the intensity of the IR absorption peaks resulted in the following values: 2.9 +/- 0.8; 4.5 +/- 0.9 and 5.6 +/- 0.8 nm for the latent track radius after irradiation with Xe, Au and U beams, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.