996 resultados para Species roles
Resumo:
Retrotransposons, which used to be considered as “junk DNA”, have begun to reveal their immense value to genome evolution and human biology due to recent studies. They consist of at least ~45% of the human genome and are more or less the same in other mammalian genomes. Retrotransposon elements (REs) are known to affect the human genome through many different mechanisms, such as generating insertion mutations, genomic instability, and alteration in gene expression. Previous studies have suggested several RE subfamilies, such as Alu, L1, SVA and LTR, are currently active in the human genome, and they are an important source of genetic diversity between human and other primates, as well as among humans. Although several groups had used Retrotransposon Insertion Polymorphisms (RIPs) as markers in studying primate evolutionary history, no study specifically focused on identifying Human-Specific Retrotransposon Element (HS-RE) and their roles in human genome evolution. In this study, by computationally comparing the human genome to 4 primate genomes, we identified a total of 18,860 HS-REs, among which are 11,664 Alus, 4,887 L1s, 1,526 SVAs and 783 LTRs (222 full length entries), representing the largest and most comprehensive list of HS-REs generated to date. Together, these HS-REs contributed a total of 14.2Mb sequence increase from the inserted REs and Target Site Duplications (TSDs), 71.6Kb increase from transductions, and 268.2 Kb sequence deletion of from insertion-mediated deletion, leading to a net increase of ~14 Mb sequences to the human genome. Furthermore, we observed for the first time that Y chromosome might be a hot target for new retrotransposon insertions in general and particularly for LTRs. The data also allowed for the first time the survey of frequency of TE insertions inside other TEs in comparison with TE insertion into none-TE regions. In summary, our data suggest that retrotransposon elements have played a significant role in the evolution of Homo sapiens.
Resumo:
La santé folliculaire est déterminée par un nombre de facteurs endocriniens, paracrines et autocrines. Les gonadotrophines hypophysaires sont les principaux moteurs du développement du follicule, mais leurs actions sont modulées localement par les hormones et des facteurs de croissance. Les glycoprotéines de la famille des WNTs représentent une grande famille de molécules impliquées dans différentes voies de signalisation. Ils sont sécrétés dans le but de moduler et coordonner la réponse des follicules aux gonadotrophines, et leurs activités sont indispensables à la fonction ovarienne et à la fertilité féminine. Les WNTs sont généralement classés en fonction de la (des) voie(s) qu’ils activent. Le rôle des membres de la voie canonique WNT et de ses composants tels que CTNNB1, WNT4, WNT2, FZD1 et FZD4 est bien établi au cours du développement du follicule chez les rongeurs. Un rôle similaire des WNTs dans les espèces mono-ovulatoires demeure essentiellement inconnu. De plus, le rôle des WNT non canoniques dans l'ovaire de rongeurs est méconnu. Les objectifs de cette thèse sont (1) d'élucider la régulation hormonale de l'expression de WNT5A et le rôle physiologique de WNT5A dans les cellules de la granulosa bovine in vitro et (2) d'identifier les rôles physiologiques de WNT5A dans l'ovaire de souris par inactivation génique conditionnelle. Chacun de ces objectifs a mené à la publication d’un article à partir des résultats obtenus au cours de cette thèse. Dans le premier article, le rôle de WNT5A dans les cellules de la granulosa bovine a été étudié in vitro. Nous avons constaté que WNT5A est un régulateur négatif de la stéroïdogenèse stimulée par la FSH issue des cellules de la granulosa, et qu'il agit en supprimant l'activité de signalisation des WNTs canoniques tout en induisant la voie de signalisation MAPK8/JUN. le deuxième article, afin d’examiner le rôle de deux WNTs non-canoniques, WNT5A et WNT11, à différents stades de développement folliculaire, nous avons généré des modèles de souris knock-out conditionnels ciblant les cellules de la granulosa pour chacun de ces WNTs. Les résultats obtenus ont permis de mettre en évidence que WNT5A est nécessaire pour assurer la fertilité normale chez la femelle, le développement folliculaire et la stéroïdogenèse ovarienne. Il est aussi un antagoniste de la réponse aux gonadotrophines, agissant par l’intermédiaire de la suppression de la signalisation canonique des WNTs. Chez les souris knock-out pour WNT11, nous ne constatons aucun défaut important dans la fertilité des femelles. L’ensemble de notre travail met en évidence que WNT5A est essentiel pour le développement normal du follicule et qu’il agit pour inhiber la différenciation des cellules de la granulosa. En résumé, nous avons fourni une étude novatrice et approfondie, utilisant plusieurs modèles et techniques pour déterminer les mécanismes par lesquels WNT5A régule le développement des follicules.
Resumo:
Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do ⁄ do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres ⁄ telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny-based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co-evolved with body size. Multiple independent times smaller, shorter-lived species changed to having longer telomeres and expressing telomerase. Trade-offs involving reducing the energetic ⁄ cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence oftelomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human-like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging. Key words: evolution of telomeres; immortalization; telomerase; replicative aging; senescence.
Resumo:
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
Resumo:
1. Agri-environment schemes remain a controversial approach to reversing biodiversity losses, partly because the drivers of variation in outcomes are poorly understood. In particular, there is a lack of studies that consider both social and ecological factors. 2. We analysed variation across 48 farms in the quality and biodiversity outcomes of agri-environmental habitats designed to provide pollen and nectar for bumblebees and butterflies or winter seed for birds. We used interviews and ecological surveys to gather data on farmer experience and understanding of agri-environment schemes, and local and landscape environmental factors. 3. Multimodel inference indicated social factors had a strong impact on outcomes and that farmer experiential learning was a key process. The quality of the created habitat was affected positively by the farmer’s previous experience in environmental management. The farmer’s confidence in their ability to carry out the required management was negatively related to the provision of floral resources. Farmers with more wildlife-friendly motivations tended to produce more floral resources, but fewer seed resources. 4. Bird, bumblebee and butterfly biodiversity responses were strongly affected by the quantity of seed or floral resources. Shelter enhanced biodiversity directly, increased floral resources and decreased seed yield. Seasonal weather patterns had large effects on both measures. Surprisingly, larger species pools and amounts of semi-natural habitat in the surrounding landscape had negative effects on biodiversity, which may indicate use by fauna of alternative foraging resources. 5. Synthesis and application. This is the first study to show a direct role of farmer social variables on the success of agri-environment schemes in supporting farmland biodiversity. It suggests that farmers are not simply implementing agri-environment options, but are learning and improving outcomes by doing so. Better engagement with farmers and working with farmers who have a history of environmental management may therefore enhance success. The importance of a number of environmental factors may explain why agri-environment outcomes are variable, and suggests some – such as the weather – cannot be controlled. Others, such as shelter, could be incorporated into agri-environment prescriptions. The role of landscape factors remains complex and currently eludes simple conclusions about large-scale targeting of schemes.
Resumo:
Although not belonging to the class of professional phagocytes, in many species trophoblast cells exhibit intense phagocytic activity. The complete range of physiological functions of trophoblast phagocytosis has not yet been fully characterized. Close association between the trophoblast and nutrition was determined many years ago. Hubrecht (1889) when proposing for the first time the name trophoblast to the external layer of the blastocyst, directly established the nutritive significance of this embryonic layer. Indeed, histotrophic phagocytosis, i.e. the internalization of maternal cells and secreted materials, is considered an important function of the trophoblast before the completion of the placenta. Recently, however, unexpected characteristics of the trophoblast have significantly enhanced our understanding of this process. Roles in acquisition of space for embryo development, in tissue remodeling during implantation and placentation and in defense mechanisms are highlighting how this cellular activity may be relevant for the maternal-fetal relationship beyond its nutritional function.
Resumo:
The brainstem is a major site in the central nervous system involved in the processing of the cardiovascular reflexes such as the baroreflex and the peripheral chemoreflex. The nucleus tractus solitarius and the rostral ventrolateral medulla are 2 important brainstem nuclei, and they play pivotal roles in autonomic cardiovascular regulation. Angiotensin II is one of the neurotransmitters involved in the processing of the cardiovascular reflexes within the brainstem. It is well-known that one of the mechanisms by which angiotensin II exerts its effect is via the activation of pathways that generate reactive oxygen species (ROS). In the central nervous system, ROS are reported to be involved in several pathological diseases such as hypertension, heart failure and sleep apnea. However, little is known about the role of ROS in the processing of the cardiovascular reflexes within the brainstem. The present review mainly discussed some recent findings documenting a role for ROS in the processing of the baroreflex and the peripheral chemoreflex in the brainstem.
Resumo:
The possible roles played by yeasts in attine ant nests are mostly unknown. Here we present our investigations on the plant polysaccharide degradation profile of 82 yeasts isolated from fungus gardens of Atta and Acromyrmex species to demonstrate that yeasts found in ant nests may play the role of making nutrients readily available throughout the garden and detoxification of compounds that may be deleterious to the ants and their fungal cultivar. Among the yeasts screened, 65% exhibited cellulolytic enzymes, 44% exhibited pectinolytic activity while 27% and 17% possess enzyme systems for the degradation of protease and amylase, respectively. Galacturonic acid, which had been reported in previous work to be poorly assimilated by the ant fungus and also to have a negative effect on ants' survival, was assimilated by 64% and 79% of yeasts isolated from nests of A. texana and Acromyrmex respectively. Our results suggest that yeasts found in ant nests may participate in generation of nutrients and removal of potentially toxic compounds, thereby contributing to the stability of the complex microbiota found in the leaf-cutting ant nests.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The genus Macrobrachium (Bate, 1868) belongs to the Palaemonidae family. These species are commonly found in lakes, floodplains and rivers in tropical and subtropical regions of South America. The Macrobrachium genus encompasses nearly 210 species of ecological and economic importance. In this study, three species of Macrobrachium (M acrobrachium jelskii, M acrobrachium amazonicum and M acrobrachium brasiliense) were studied in order to characterize the esterase patterns in the hepatopancreas, which were still unknown. Esterases are enzymes which catalyze the hydrolysis of esters. In the hepatopancreas, these enzymes play important roles in several metabolic processes involved in some functions of this organ, such as detoxification and digestion. Twelve esterase bands (EST1 to EST12) were detected in these species, and a comparison among them showed no qualitative differences in interspecific bands, or between males and females. Inhibitors were used to classify the esterase bands. The results indicated seven acetylesterases, two carboxylesterases, one arylesterase, and one cholinesterase. The EST11 band was not detected in these procedures because of its lower frequency. Statistical analyses showed no variability among the species, in either interspecific or intraspecific assays. These results support the hypothesis of a high evolutionary conservation of esterases in the hepatopancreas of these crustaceans. The data enabled us to assess the genetic structure of these species through the use of esterasic enzymes. It also contributes to our knowledge about the biology of these poorly studied species. Knowledge on the genetic structure of populations and species are essential when defining priorities for their management and conservation. © 2012 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.