930 resultados para Spatial analysis of geographical data
Resumo:
The association between fine particulate matter air pollution (PM2.5) and cardiovascular disease (CVD) mortality was spatially analyzed for Harris County, Texas, at the census tract level. The objective was to assess how increased PM2.5 exposure related to CVD mortality in this area while controlling for race, income, education, and age. An estimated exposure raster was created for Harris County using Kriging to estimate the PM2.5 exposure at the census tract level. The PM2.5 exposure and the CVD mortality rates were analyzed in an Ordinary Least Squares (OLS) regression model and the residuals were subsequently assessed for spatial autocorrelation. Race, median household income, and age were all found to be significant (p<0.05) predictors in the model. This study found that for every one μg/m3 increase in PM2.5 exposure, holding age and education variables constant, an increase of 16.57 CVD deaths per 100,000 would be predicted for increased minimum exposure values and an increase of 14.47 CVD deaths per 100,000 would be predicted for increased maximum exposure values. This finding supports previous studies associating PM2.5 exposure with CVD mortality. This study further identified the areas of greatest PM2.5 exposure in Harris County as being the geographical locations of populations with the highest risk of CVD (i.e., predominantly older, low-income populations with a predominance of African Americans). The magnitude of the effect of PM2.5 exposure on CVD mortality rates in the study region indicates a need for further community-level studies in Harris County, and suggests that reducing excess PM2.5 exposure would reduce CVD mortality.^
Resumo:
The objective of this study was to assess the potential of visible and near infrared spectroscopy (VIS+NIRS) combined with multivariate analysis for identifying the geographical origin of cork. The study was carried out on cork planks and natural cork stoppers from the most representative cork-producing areas in the world. Two training sets of international and national cork planks were studied. The first set comprised a total of 479 samples from Morocco, Portugal, and Spain, while the second set comprised a total of 179 samples from the Spanish regions of Andalusia, Catalonia, and Extremadura. A training set of 90 cork stoppers from Andalusia and Catalonia was also studied. Original spectroscopic data were obtained for the transverse sections of the cork planks and for the body and top of the cork stoppers by means of a 6500 Foss-NIRSystems SY II spectrophotometer using a fiber optic probe. Remote reflectance was employed in the wavelength range of 400 to 2500 nm. After analyzing the spectroscopic data, discriminant models were obtained by means of partial least square (PLS) with 70% of the samples. The best models were then validated using 30% of the remaining samples. At least 98% of the international cork plank samples and 95% of the national samples were correctly classified in the calibration and validation stage. The best model for the cork stoppers was obtained for the top of the stoppers, with at least 90% of the samples being correctly classified. The results demonstrate the potential of VIS + NIRS technology as a rapid and accurate method for predicting the geographical origin of cork plank and stoppers
Resumo:
This paper empirically analyses a dataset of more than 7,300 agricultural land sales transactions from 2001 and 2007 to identify the factors influencing agricultural land prices in Bavaria. We use a general spatial model, which combines a spatial lag and a spatial error model, and in addition account for endogeneity introduced by the spatially lagged dependent variable as well as other explanatory variables. Our findings confirm the strong influence of agricultural factors such as land productivity, of variables describing the regional land market structure, and of non-agricultural factors such as urban pressure on agricultural land prices. Moreover, the involvement of public authorities as a seller or buyer increases sales prices in Bavaria. We find a significant capitalisation of government support payments into agricultural land, where a decrease of direct payments by 1% would decrease land prices in 2007 and 2001 by 0.27% and 0.06%, respectively. In addition, we confirm strong spatial relationships in our dataset. Neglecting this leads to biased estimates, especially if aggregated data is used. We find that the price of a specific plot increases by 0.24% when sales prices in surrounding areas increase by 1%.
Resumo:
This paper presents the results of a multivariate spatial analysis of 38 vowel formant variables in the language of 402 informants from 236 cities from across the contiguous United States, based on the acoustic data from the Atlas of North American English (Labov, Ash & Boberg, 2006). The results of the analysis both confirm and challenge the results of the Atlas. Most notably, while the analysis identifies similar patterns as the Atlas in the West and the Southeast, the analysis finds that the Midwest and the Northeast are distinct dialect regions that are considerably stronger than the traditional Midland and Northern dialect region indentified in the Atlas. The analysis also finds evidence that a western vowel shift is actively shaping the language of the Western United States.
Resumo:
In this paper we analyzed the adsorption of gases and vapors on graphitised thermal carbon black by using a modified DFT-lattice theory, in which we assume that the behavior of the first layer in the adsorption film is different from those of second and higher layers. The effects of various parameters on the topology of the adsorption isotherm were first investigated, and the model was then applied in the analysis of adsorption data of numerous substances on carbon black. We have found that the first layer in the adsorption film behaves differently from the second and higher layers in such a way that the adsorbate-adsorbate interaction energy in the first layer is less than that of second and higher layers, and the same is observed for the partition function. Furthermore, the adsorbate-adsorbate and adsorbate-adsorbent interaction energies obtained from the fitting are consistently lower than the corresponding values obtained from the viscosity data and calculated from the Lorentz-Berthelot rule, respectively.
Resumo:
The increasing availability of mobility data and the awareness of its importance and value have been motivating many researchers to the development of models and tools for analyzing movement data. This paper presents a brief survey of significant research works about modeling, processing and visualization of data about moving objects. We identified some key research fields that will provide better features for online analysis of movement data. As result of the literature review, we suggest a generic multi-layer architecture for the development of an online analysis processing software tool, which will be used for the definition of the future work of our team.
Resumo:
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
ABSTRACT OBJECTIVE To describe the spatial distribution of avoidable hospitalizations due to tuberculosis in the municipality of Ribeirao Preto, SP, Brazil, and to identify spatial and space-time clusters for the risk of occurrence of these events. METHODS This is a descriptive, ecological study that considered the hospitalizations records of the Hospital Information System of residents of Ribeirao Preto, SP, Southeastern Brazil, from 2006 to 2012. Only the cases with recorded addresses were considered for the spatial analyses, and they were also geocoded. We resorted to Kernel density estimation to identify the densest areas, local empirical Bayes rate as the method for smoothing the incidence rates of hospital admissions, and scan statistic for identifying clusters of risk. Softwares ArcGis 10.2, TerraView 4.2.2, and SaTScanTM were used in the analysis. RESULTS We identified 169 hospitalizations due to tuberculosis. Most were of men (n = 134; 79.2%), averagely aged 48 years (SD = 16.2). The predominant clinical form was the pulmonary one, which was confirmed through a microscopic examination of expectorated sputum (n = 66; 39.0%). We geocoded 159 cases (94.0%). We observed a non-random spatial distribution of avoidable hospitalizations due to tuberculosis concentrated in the northern and western regions of the municipality. Through the scan statistic, three spatial clusters for risk of hospitalizations due to tuberculosis were identified, one of them in the northern region of the municipality (relative risk [RR] = 3.4; 95%CI 2.7–4,4); the second in the central region, where there is a prison unit (RR = 28.6; 95%CI 22.4–36.6); and the last one in the southern region, and area of protection for hospitalizations (RR = 0.2; 95%CI 0.2–0.3). We did not identify any space-time clusters. CONCLUSIONS The investigation showed priority areas for the control and surveillance of tuberculosis, as well as the profile of the affected population, which shows important aspects to be considered in terms of management and organization of health care services targeting effectiveness in primary health care.
Resumo:
Electric power networks, namely distribution networks, have been suffering several changes during the last years due to changes in the power systems operation, towards the implementation of smart grids. Several approaches to the operation of the resources have been introduced, as the case of demand response, making use of the new capabilities of the smart grids. In the initial levels of the smart grids implementation reduced amounts of data are generated, namely consumption data. The methodology proposed in the present paper makes use of demand response consumers’ performance evaluation methods to determine the expected consumption for a given consumer. Then, potential commercial losses are identified using monthly historic consumption data. Real consumption data is used in the case study to demonstrate the application of the proposed method.
Resumo:
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
Resumo:
AbstractINTRODUCTION:We present a review of injuries in humans caused by aquatic animals in Brazil using the Information System for Notifiable Diseases [ Sistema de Informação de Agravos de Notificação (SINAN)] database.METHODS:A descriptive and retrospective epidemiological study was conducted from 2007 to 2013.RESULTS:A total of 4,118 accidents were recorded. Of these accidents, 88.7% (3,651) were caused by venomous species, and 11.3% (467) were caused by poisonous, traumatic or unidentified aquatic animals. Most of the events were injuries by stingrays (69%) and jellyfish (13.1%). The North region was responsible for the majority of reports (66.2%), with a significant emphasis on accidents caused by freshwater stingrays (92.2% or 2,317 cases). In the South region, the region with the second highest number of records (15.7%), jellyfish caused the majority of accidents (83.7% or 452 cases). The Northeastern region, with 12.5% of the records, was notable because almost all accidents were caused by toadfish (95.6% or 174 cases).CONCLUSIONS:Although a comparison of different databases has not been performed, the data presented in this study, compared to local and regional surveys, raises the hypothesis of underreporting of accidents. As the SINAN is the official system for the notification of accidents by venomous animals in Brazil, it is imperative that its operation be reviewed and improved, given that effective measures to prevent accidents by venomous animals depend on a reliable database and the ability to accurately report the true conditions.
Resumo:
Programa Doutoral em Matemática e Aplicações.
Resumo:
New methods of analysis of patent statistics allow assessing country profiles of technological specialization for the period 1990-2006. We witness a modest decrease in levels of specialization, which we show to be negatively influenced by country size and degree of internationalization of inventive activities.