924 resultados para Space-time block coding (STBC)
Resumo:
Cooperative transmission can be seen as a "virtual" MIMO system, where themultiple transmit antennas are in fact implemented distributed by the antennas both at the source and the relay terminal. Depending on the system design, diversity/multiplexing gainsare achievable. This design involves the definition of the type of retransmission (incrementalredundancy, repetition coding), the design of the distributed space-time codes, the errorcorrecting scheme, the operation of the relay (decode&forward or amplify&forward) and thenumber of antennas at each terminal. Proposed schemes are evaluated in different conditionsin combination with forward error correcting codes (FEC), both for linear and near-optimum(sphere decoder) receivers, for its possible implementation in downlink high speed packetservices of cellular networks. Results show the benefits of coded cooperation over directtransmission in terms of increased throughput. It is shown that multiplexing gains areobserved even if the mobile station features a single antenna, provided that cell wide reuse of the relay radio resource is possible.
Resumo:
Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.
Resumo:
The discrete Fourier transmission spread OFDM DFTS-OFDM) based single-carrier frequency division multiple access (SC-FDMA) has been widely adopted due to its lower peak-to-average power ratio (PAPR) of transmit signals compared with OFDM. However, the offset modulation, which has lower PAPR than general modulation, cannot be directly applied into the existing SC-FDMA. When pulse-shaping filters are employed to further reduce the envelope fluctuation of transmit signals of SC-FDMA, the spectral efficiency degrades as well. In order to overcome such limitations of conventional SC-FDMA, this paper for the first time investigated cyclic prefixed OQAMOFDM (CP-OQAM-OFDM) based SC-FDMA transmission with adjustable user bandwidth and space-time coding. Firstly, we propose CP-OQAM-OFDM transmission with unequally-spaced subbands. We then apply it to SC-FDMA transmission and propose a SC-FDMA scheme with the following features: a) the transmit signal of each user is offset modulated single-carrier with frequency-domain pulse-shaping; b) the bandwidth of each user is adjustable; c) the spectral efficiency does not decrease with increasing roll-off factors. To combat both inter-symbolinterference and multiple access interference in frequencyselective fading channels, a joint linear minimum mean square error frequency domain equalization using a prior information with low complexity is developed. Subsequently, we construct space-time codes for the proposed SC-FDMA. Simulation results confirm the powerfulness of the proposed CP-OQAM-OFDM scheme (i.e., effective yet with low complexity).
Resumo:
La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.
Resumo:
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
Resumo:
Among the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions in order to reduce the availability of fuel mass. However, the impact of these activities on soil physical and chemical properties varies according to the type of both soil and vegetation and is not fully understood. Therefore, soil monitoring campaigns are often used to measure these impacts. In this paper we have successfully used three statistical data treatments - the Kolmogorov-Smirnov test followed by the ANOVA and the Kruskall-Wallis tests – to investigate the variability among the soil pH, soil moisture, soil organic matter and soil iron variables for different monitoring times and sampling procedures.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
INTRODUCTION: The objective was to identify space and space-time risk clusters for the occurrence of deaths in a priority city for the control of tuberculosis (TB) in the Brazilian Northeast. METHODS: Ecological research was undertaken in the City of São Luis/Maranhão. Cases were considered that resulted in deaths in the population living in the urban region of the city with pulmonary TB as the basic cause, between 2008 and 2012. To detect space and space-time clusters of deaths due to pulmonary TB in the census sectors, the spatial analysis scan technique was used. RESULTS: In total, 221 deaths by TB occurred, 193 of which were due to pulmonary TB. Approximately 95% of the cases (n=183) were geocoded. Two significant spatial clusters were identified, the first of which showed a mortality rate of 5.8 deaths per 100,000 inhabitants per year and a high relative risk of 3.87. The second spatial cluster showed a mortality rate of 0.4 deaths per 100,000 inhabitants per year and a low relative risk of 0.10. A significant cluster was observed in the space-time analysis between 11/01/2008 and 04/30/2011, with a mortality rate of 8.10 deaths per 100,000 inhabitants per year and a high relative risk (3.0). CONCLUSIONS: The knowledge of priority sites for the occurrence of deaths can support public management to reduce inequities in the access to health services and permit an optimization of the resources and teams in the control of pulmonary TB, providing support for specific strategies focused on the most vulnerable populations.
Resumo:
This work describes the spatial-temporal variation of the relative abundance and size of Limnoperna fortunei (Dunker, 1857) collected in São Gonçalo Channel through bottom trawl with a 0.5 cm mesh, at depths between 3 and 6 m. The estimative of mean relative abundance (CPUE) ranged from 2,425.3 individuals per drag (ind./drag) in the spring to 21,715.0 ind./drag in the fall, with an average of 9,515.3 ind./drag throughout the year. The estimated mean density of L. fortunei for the deep region of São Gonçalo Channel ranged from 1.2 to 10.3 ind./m², and it was recorded a maximum density of 84.9 ind./m² in the fall of 2008. The method of sampling using bottom trawl enabled the capture of L. fortunei under the soft muddy bottom of the channel, in different sizes ranging from 0.4 to 3.2 cm. This shows that the structure of the L. fortunei adult population under the bottom of the São Gonçalo Channel is composed mostly of small individuals (<1.4 cm), which represent up to 74% of the population collected.
Resumo:
ABSTRACT This dissertation investigates the, nature of space-time as described by the theory of general relativity. It mainly argues that space-time can be naturally interpreted as a physical structure in the precise sense of a network of concrete space-time relations among concrete space-time points that do not possess any intrinsic properties and any intrinsic identity. Such an interpretation is fundamentally based on two related key features of general relativity, namely substantive general covariance and background independence, where substantive general covariance is understood as a gauge-theoretic invariance under active diffeomorphisms and background independence is understood in the sense that the metric (or gravitational) field is dynamical and that, strictly speaking, it cannot be uniquely split into a purely gravitational part and a fixed purely inertial part or background. More broadly, a precise notion of (physical) structure is developed within the framework of a moderate version of structural realism understood as a metaphysical claim about what there is in the world. So, the developement of this moderate structural realism pursues two main aims. The first is purely metaphysical, the aim being to develop a coherent metaphysics of structures and of objects (particular attention is paid to the questions of identity and individuality of these latter within this structural realist framework). The second is to argue that moderate structural realism provides a convincing interpretation of the world as described by fundamental physics and in particular of space-time as described by general relativity. This structuralist interpretation of space-time is discussed within the traditional substantivalist-relationalist debate, which is best understood within the broader framework of the question about the relationship between space-time on the one hand and matter on the other. In particular, it is claimed that space-time structuralism does not constitute a 'tertium quid' in the traditional debate. Some new light on the question of the nature of space-time may be shed from the fundamental foundational issue of space-time singularities. Their possible 'non-local' (or global) feature is discussed in some detail and it is argued that a broad structuralist conception of space-time may provide a physically meaningful understanding of space-time singularities, which is not plagued by the conceptual difficulties of the usual atomsitic framework. Indeed, part of these difficulties may come from the standard differential geometric description of space-time, which encodes to some extent this atomistic framework; it raises the question of the importance of the mathematical formalism for the interpretation of space-time.
Resumo:
Background. We describe the diversity of two kinds of mycobacteria isolates, environmental mycobacteria and Mycobacterium bovis collected from wild boar, fallow deer, red deer and cattle in Doñana National Park (DNP, Spain), analyzing their association with temporal, spatial and environmental factors. Results. High diversity of environmental mycobacteria species and M. bovis typing patterns (TPs) were found. When assessing the factors underlying the presence of the most common types of both environmental mycobacteria and M. bovis TPs in DNP, we evidenced (i) host species differences in the occurrence, (ii) spatial structuration and (iii) differences in the degree of spatial association of specific types between host species. Co-infection of a single host by two M. bovis TPs occurred in all three wild ungulate species. In wild boar and red deer, isolation of one group of mycobacteria occurred more frequently in individuals not infected by the other group. While only three TPs were detected in wildlife between 1998 and 2003, up to 8 different ones were found during 2006-2007. The opposite was observed in cattle. Belonging to an M. bovis-infected social group was a significant risk factor for mycobacterial infection in red deer and wild boar, but not for fallow deer. M. bovis TPs were usually found closer to water marshland than MOTT. Conclusions. The diversity of mycobacteria described herein is indicative of multiple introduction events and a complex multi-host and multi-pathogen epidemiology in DNP. Significant changes in the mycobacterial isolate community may have taken place, even in a short time period (1998 to 2007). Aspects of host social organization should be taken into account in wildlife epidemiology. Wildlife in DNP is frequently exposed to different species of non-tuberculous, environmental mycobacteria, which could interact with the immune response to pathogenic mycobacteria, although the effects are unknown. This research highlights the suitability of molecular typing for surveys at small spatial and temporal scales.
Resumo:
BACKGROUND We describe the diversity of two kinds of mycobacteria isolates, environmental mycobacteria and Mycobacterium bovis collected from wild boar, fallow deer, red deer and cattle in Doñana National Park (DNP, Spain), analyzing their association with temporal, spatial and environmental factors. RESULTS High diversity of environmental mycobacteria species and M. bovis typing patterns (TPs) were found. When assessing the factors underlying the presence of the most common types of both environmental mycobacteria and M. bovis TPs in DNP, we evidenced (i) host species differences in the occurrence, (ii) spatial structuration and (iii) differences in the degree of spatial association of specific types between host species. Co-infection of a single host by two M. bovis TPs occurred in all three wild ungulate species. In wild boar and red deer, isolation of one group of mycobacteria occurred more frequently in individuals not infected by the other group. While only three TPs were detected in wildlife between 1998 and 2003, up to 8 different ones were found during 2006-2007. The opposite was observed in cattle. Belonging to an M. bovis-infected social group was a significant risk factor for mycobacterial infection in red deer and wild boar, but not for fallow deer. M. bovis TPs were usually found closer to water marshland than MOTT. CONCLUSIONS The diversity of mycobacteria described herein is indicative of multiple introduction events and a complex multi-host and multi-pathogen epidemiology in DNP. Significant changes in the mycobacterial isolate community may have taken place, even in a short time period (1998 to 2007). Aspects of host social organization should be taken into account in wildlife epidemiology. Wildlife in DNP is frequently exposed to different species of non-tuberculous, environmental mycobacteria, which could interact with the immune response to pathogenic mycobacteria, although the effects are unknown. This research highlights the suitability of molecular typing for surveys at small spatial and temporal scales.
Resumo:
Forest fires are defined as uncontrolled fires often occurring in wildland areas, but that can also affect houses or agricultural resources. Causes are both natural (e.g.,lightning phenomena) and anthropogenic (human negligence or arsons).Major environmental factors influencing the fire ignition and propagation are climate and vegetation. Wildfires are most common and severe during drought period and on windy days. Moreover, under water-stress conditions, which occur after a long hot and dry period, the vegetation is more vulnerable to fire. These conditions are common in the United State and Canada, where forest fires represent a big problem. We focused our analysis on the state of Florida, for which a big dataset on forest fires detection is readily available. USDA Forest Service Remote Sensing Application Center, in collaboration with NASA-Goddard Space Flight Center and the University of Maryland, has compiled daily MODIS Thermal Anomalies (fires and biomass burning images) produced by NASA using a contextual algorithm that exploits the strong emission of mid-infrared radiation from fires. Fire classes were converted in GIS format: daily MODIS fire detections are provided as the centroids of the 1 kilometer pixels and compiled into daily Arc/INFO point coverage.
Resumo:
Genes affect not only the behavior and fitness of their carriers but also that of other individuals. According to Hamilton's rule, whether a mutant gene will spread in the gene pool depends on the effects of its carrier on the fitness of all individuals in the population, each weighted by its relatedness to the carrier. However, social behaviors may affect not only recipients living in the generation of the actor but also individuals living in subsequent generations. In this note, I evaluate space-time relatedness coefficients for localized dispersal. These relatedness coefficients weight the selection pressures on long-lasting behaviors, which stem from a multigenerational gap between phenotypic expression by actors and the resulting environmental feedback on the fitness of recipients. Explicit values of space-time relatedness coefficients reveal that they can be surprisingly large for typical dispersal rates, even for hundreds of generations in the future.