909 resultados para Space-time analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth-directed coronal mass ejection (CME) of 8 April 2010 provided an opportunity for space weather predictions from both established and developmental techniques to be made from near–real time data received from the SOHO and STEREO spacecraft; the STEREO spacecraft provide a unique view of Earth-directed events from outside the Sun-Earth line. Although the near–real time data transmitted by the STEREO Space Weather Beacon are significantly poorer in quality than the subsequently downlinked science data, the use of these data has the advantage that near–real time analysis is possible, allowing actual forecasts to be made. The fact that such forecasts cannot be biased by any prior knowledge of the actual arrival time at Earth provides an opportunity for an unbiased comparison between several established and developmental forecasting techniques. We conclude that for forecasts based on the STEREO coronagraph data, it is important to take account of the subsequent acceleration/deceleration of each CME through interaction with the solar wind, while predictions based on measurements of CMEs made by the STEREO Heliospheric Imagers would benefit from higher temporal and spatial resolution. Space weather forecasting tools must work with near–real time data; such data, when provided by science missions, is usually highly compressed and/or reduced in temporal/spatial resolution and may also have significant gaps in coverage, making such forecasts more challenging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the dynamics of deposition around and across the causewayed enclosure at Etton, Cambridgeshire. As a result of detailed re-analysis (particularly refitting) of the pottery and flint assemblages from the site, it proved possible to shed new light both on the temporality of occupation and the character of deposition there. Certain aspects of our work challenge previous interpretations of the site, and of causewayed enclosures in general; but, just as importantly, others confirm materially what has previously been suggested. The quantities of material deposited at Etton reveal that the enclosure was occupied only very intermittently and certainly less regularly than other contemporary sites in the region. The spatial distribution of material suggests that the enclosure ditch lay open for the entirety of the monument's life, but that acts of deposition generally focused on a specific part of the monument at any one time. As well as enhancing our knowledge of one particular causewayed enclosure, it is hoped that this paper – in combination with our earlier analysis of the pit site at Kilverstone – makes clear the potential that detailed material analysis has to offer in relation to our understanding of the temporality of occupation on prehistoric sites in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180, are found to be tridimensional quasi-periodic orbits around the same family of periodic orbits found for the planar case (i = 180 degrees). It was not found any periodic orbit out of the plane associated to such quasi-periodic orbits. The largest region of stable prograde trajectories occurs at i = 60 degrees. Trajectories in such region are found to behave as quasi-periodic orbits evolving similarly to the stable retrograde trajectories that occurs at i = 120 degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize a previous work on Dirac eigenvalues as dynamical variables of Euclidean supergravity. The most general set of constraints on the curvatures of the tangent bundle and on the spinor bundle of the space-time manifold, under which space-time admits Dirac eigenvalues as observables, are derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the teleparallel equivalent of general relativity, we obtain the evolution equation of the neutrino oscillation in vacuum. A comparison with the equivalent result of general relativity case, shows that the Dirac equation in Riemann and Weitzenbock space-times is equivalent in the spherical symmetric Schwarzschild space-time, but turns out to be different in the case of the axial symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of gravitational capture in the framework of the Sun-Uranus-particle system. Part of the space of initial conditions is systematically explored, and the duration of temporary gravitational capture is measured. The location and size of different capture-time regions are given in terms of diagrams of initial semimajor axis versus eccentricity. The other initial orbital elements - inclination (i), longitude of the node (Ω), argument of pericenter (ω), and time of pericenter passage (τ) - are first taken to be zero. Then we investigate the cases with ω = 90°, 180°, and 270°. We also present a sample of results for Ω = 90°, considering the cases i = 60°, 120°, 150°, and 180°. Special attention is given to the influence of the initial orbital inclination, taking orbits initially in opposition at pericenter. In this case, the initial inclination is varied from 0° to 180° in steps of 10°. The success of the final stage of the capture problem, which involves the transformation of temporary captures into permanent ones, is highly dependent on the initial conditions associated with the longest capture times. The largest regions of the initial-conditions space with the longest capture times occur at inclinations of 60°-70° and 160°. The regions of possible stability as a function of initial inclination are also delimited. These regions include not only a known set of retrograde orbits, but also a new sort of prograde orbit with inclinations greater than zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of soil CO2 emissions (FCO2) is important for the study of the global carbon cycle. This phenomenon presents great variability in space and time, a characteristic that makes attempts at modeling and forecasting FCO2 challenging. Although spatial estimates have been performed in several studies, the association of these estimates with the uncertainties inherent in the estimation procedures is not considered. This study aimed to evaluate the local, spatial, local-temporal and spatial-temporal uncertainties of short-term FCO2 after harvest period in a sugar cane area. The FCO2 was featured in a sampling grid of 60m×60m containing 127 points with minimum separation distances from 0.5 to 10m between points. The FCO2 was evaluated 7 times within a total period of 10 days. The variability of FCO2 was described by descriptive statistics and variogram modeling. To calculate the uncertainties, 300 realizations made by sequential Gaussian simulation were considered. Local uncertainties were evaluated using the probability values exceeding certain critical thresholds, while the spatial uncertainties considering the probability of regions with high probability values together exceed the adopted limits. Using the daily uncertainties, the local-spatial and spatial-temporal uncertainty (Ftemp) was obtained. The daily and mean emissions showed a variability structure that was described by spherical and Gaussian models. The differences between the daily maps were related to variations in the magnitude of FCO2, covering mean values ranging from 1.28±0.11μmolm-2s-1 (F197) to 1.82±0.07μmolm-2s-1 (F195). The Ftemp showed low spatial uncertainty coupled with high local uncertainty estimates. The average emission showed great spatial uncertainty of the simulated values. The evaluation of uncertainties associated with the knowledge of temporal and spatial variability is an important tool for understanding many phenomena over time, such as the quantification of greenhouse gases or the identification of areas with high crop productivity. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: to identify patterns in the spatial and temporal distribution of cases of dengue fever occurring in the city of Cruzeiro, state of Sao Paulo (SP).Methods: an ecological and exploratory study was undertaken using spatial analysis tools and data from dengue cases obtained on the SinanNet. The analysis was carried out by area, using the IBGE census sector as a unit. The months of March to June 2006 and 2011 were assessed, revealing progress of the disease. TerraView 3.3.1 was used to calculate the Global Moran's I, month to month, and the Kernel estimator.Results: in the year 2006, 691 cases of dengue fever (rate of 864.2 cases/100,000 inhabitants) were georeferenced; and the Moran's I and p-values were significant in the months of April and May (TM = 0.28; p = 0.01; I-M = 0.20; p = 0.01) with higher densities in the central, north, northeast and south regions. In the year 2011, 654 cases of dengue fever (rate of 886.8 cases/100,000 inhabitants) were georeferenced; and the Moran's I and p-values were significant in the months of April and May (I, = 0.28; p = 0.01; I-M = 0.16; p = 0.05) with densities in the same regions as 2006. The Global Moran's I is a global measure of spatial autocorrelation, which indicates the degree of spatial association in the set of information from the product in relation to the average. The I varies between -1 and +1 and can be attributed to a level of significance (p-value). The positive value points to a positive or direct spatial autocorrelation.Conclusion: we were able to identify patterns in the spatial and temporal distribution of dengue cases occurring in the city of Cruzeiro, SP, and locate the census sectors where the outbreak began and how it evolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of the space-time dynamics of oceanic sea states exploiting stereo imaging techniques. In particular, a novel Wave Acquisition Stereo System (WASS) has been developed and deployed at the oceanographic tower Acqua Alta in the Northern Adriatic Sea, off the Venice coast in Italy. The analysis of WASS video measurements yields accurate estimates of the oceanic sea state dynamics, the associated directional spectra and wave surface statistics that agree well with theoretical models. Finally, we show that a space-time extreme, defined as the expected largest surface wave height over an area, is considerably larger than the maximum crest observed in time at a point, in agreement with theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.