973 resultados para Sorghum arundinaceum
Resumo:
Sorghum ergot was first discovered in Australia in 1996. It affects seed production and grain usage in stock feed due to concerns of animal toxicity. Three species of Claviceps are known to cause ergot of sorghum with different epidemiological, animal toxicity, and management implications. Claviceps africana was identified as the causal agent but morphological differences between isolates raised the possibility of more than one species being involved. The major aim of this study was to identify the Claviceps species causing sorghum ergot and to determine the genetic diversity among isolates of the ergot pathogen from Australia and overseas. Symptom development, sequencing of the ITS1 region, and radiolabelled DNA amplification fingerprints (RAF) were used to confirm that ergot of sorghum in Australia is caused by C. africana. The morphology of sphacelia, microconidia, macroconidia, and secondary conidia of all 36 Australian isolates studied matched the description for C. africana and the DNA sequence of the ITS1 region of 2 selected Australian isolates was identical to that of C. africana. Based on RAF analysis of 110 Australian and overseas isolates of Claviceps spp., C. africana isolates could be clearly distinguished (
Resumo:
Sequence variation in the internal transcribed spacer (ITS-1) ribosomal DNA subunit was examined for sorghum midge obtained from introduced and native hosts in south-eastern and central Queensland. No variation was observed relative to host plant or geographical distance for midges collected from two introduced hosts, grain sorghum (Sorghum bicolor ) and Johnson grass (S. halepense ); however, sequence differences were observed between midges from introduced and native hosts and among midges from a single native host, slender bluegrass (Dichanthium affine ). No evidence was observed of introduced midges on native hosts, or vice versa. These results agree with previously hypothesised host distributions for native and introduced midges in Australia, and expand the sample of introduced hosts to include Johnson grass. They suggest that Stenodiplosis sorghicola , the principal midge infesting grain sorghum, is also the most common species on Johnson grass. This confirms that Johnson grass plays a role in the population dynamics of S. sorghicola and suggests that midges originating from Johnson grass may influence levels of infestation in grain sorghum.
Mechanisms and diversity of resistance to sorghum midge, Stenodiplosis sorghicola in Sorghum bicolor
Resumo:
Sorghum midge, Stenodiplosis sorghicola (Coquillett) is the most important pest of grain sorghum worldwide, and plant resistance is an important component for the control of this pest. To identify sorghum genotypes with diverse mechanisms of resistance to sorghum midge, we studied oviposition, larval survival, and midge damage in 27 sorghum midge-resistant genotypes, and a susceptible check under greenhouse conditions. Observations were also recorded on floral characteristics and compensation in grain mass. Of the 28 sorghum genotypes tested, 19 showed high levels of antixenosis to oviposition as a component of resistance, and had
Resumo:
Macroconidia of the sorghum ergot pathogen, Claviceps africana Frederickson, Mantle & de Milliano, survived in dried honeydew on soil for 13-14 weeks in a glasshouse at ambient temperatures, but for less than half that time on seed stored in a shadehouse over summer. Those on seeds stored at 4degreesC, however, survived for over a year (58-62 weeks). During summer, conidia on ergot-infected panicles buried in soil, or on the soil surface, survived for 7.5-12 weeks, whereas over winter the survival times were 4 weeks and 19-27 weeks, respectively. Macroconidia on infected panicles held above the soil surface survived for >38 weeks (8 calendar months) over winter, suggesting that they may play a role in the perennation of C. africana in Australia.
Resumo:
Multi-environment trials (METs) used to evaluate breeding lines vary in the number of years that they sample. We used a cropping systems model to simulate the target population of environments (TPE) for 6 locations over 108 years for 54 'near-isolines' of sorghum in north-eastern Australia. For a single reference genotype, each of 547 trials was clustered into 1 of 3 'drought environment types' (DETs) based on a seasonal water stress index. Within sequential METs of 2 years duration, the frequencies of these drought patterns often differed substantially from those derived for the entire TPE. This was reflected in variation in the mean yield of the reference genotype. For the TPE and for 2-year METs, restricted maximum likelihood methods were used to estimate components of genotypic and genotype by environment variance. These also varied substantially, although not in direct correlation with frequency of occurrence of different DETs over a 2-year period. Combined analysis over different numbers of seasons demonstrated the expected improvement in the correlation between MET estimates of genotype performance and the overall genotype averages as the number of seasons in the MET was increased.
Resumo:
Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Most studies of tiller development have not related the physiological and morphological features of each calm to its subsequent fertility. This introduced problems when trying to account for the effects of tillering on yield in crop models. The objective of this study was to detect the most likely early determinants of tiller fertility in sorghum by identifying hierarchies for emergence, fertility and grain number of tillers over a wide range of assimilate availabilities. Emergence, phenology, leaf area development and dry weight partitioning were quantified weekly for individual tillers and main culms of tillering and uniculm plants grown at one of four densities, from two to 16 plants m(-2). For a given plant in any given density, the same tiller hierarchy applied for emergence of tillers, fertility of the emerged tillers and their subsequent grain number. These results were observed over a range of tiller fertility rates (from 7 to 91%), fertile tiller number per plant at maturity (from 0.2 to 4.7), and tiller contribution to grain yield (from 5 to 78%). Tiller emergence was most probably related to assimilate supply and light quality. Development, fertility and contribution to yield of a specific tiller were highly dependent on growing conditions at the time of tiller emergence, particularly via early leaf area development of the tiller, which affected its subsequent leaf area accumulation. Assimilate availability in the main culm at the time of tiller emergence was the most likely early determinant of subsequent tiller fertility in this study. (C) 2002 Annals of Botany Company.
Resumo:
The prediction of tillering is poor or absent in existing sorghum crop models even though fertile tillers contribute significantly to grain yield. The objective of this study was to identify general quantitative relationships underpinning tiller dynamics of sorghum for a broad range of assimilate availabilities. Emergence, phenology, leaf area development and fertility of individual main calms and tillers were quantified weekly in plants grown at one of four plant densities ranging from two to 16 plants m(-2). On any given day, a tiller was considered potentially fertile (a posteriori) if its number of leaves continued to increase thereafter. The dynamics of potentially fertile tiller number per plant varied greatly with plant density, but could generally be described by three determinants, stable across plant densities: tiller emergence rate aligned with leaf ligule appearance rate; cessation of tiller emergence occurred at a stable leaf area index; and rate of decrease in potentially fertile tillers was linearly related to the ratio of realized to potential leaf area growth. Realized leaf area growth is the measured increase in leaf area, whereas potential leaf area growth is the estimated increase in leaf area if all potentially fertile tillers were to continue to develop. Procedures to predict this ratio, by estimating realized leaf area per plant from intercepted radiation and potential leaf area per plant from the number and type of developing axes, are presented. While it is suitable for modelling tiller dynamics in grain sorghum, this general framework needs to be validated by testing it in different environments and for other cultivars. (C) 2002 Annals of Botany Company.
Resumo:
Helicoverpa armigera oviposition preference for, and larval development on sorghum hybrids with differing resistance to sorghum midge, Stenodiplosis sorghicola, were investigated. When H. armigera larvae were fed seed of resistant and susceptible hybrids in the laboratory there were no differences in larval and pupal sizes or the rate of development. The same result was recorded when larvae fed on panicles on plants in a glasshouse. On some sampling occasions, significantly more eggs were laid on panicles of resistant hybrids in the field. This occurred when plants were in plots and also in a mixed planting. Midge-resistance status did not affect levels of egg parasitism. In a field study using recombinant inbred lines between a midge-resistant and a midge-susceptible line, no relationship was found between level of resistance and oviposition of H. armigera. We conclude that, although midge-resistant hybrids are sometimes preferred for oviposition by H. armigera, the resistance per se does not determine this preference. Egg survival, larval survival, development and resultant damage are not significantly affected by the midge-resistance status of the host.
Resumo:
Trials conducted in Queensland, Australia between 1997 and 2002 demonstrated that fungicides belonging to the triazole group were the most effective in minimising the severity of infection of sorghum by Claviceps africana, the causal agent of sorghum ergot. Triadimenol ( as Bayfidan 250EC) at 0.125 kg a. i./ha was the most effective fungicide. A combination of the systemic activated resistance compound acibenzolar-S-methyl ( as Bion 50WG) at 0.05 kg a. i./ha and mancozeb ( as Penncozeb 750DF) at 1.5 kg a. i./ha has the potential to provide protection against the pathogen, should triazole-resistant isolates be detected. Timing and method of fungicide application are important. Our results suggest that the triazole fungicides have no systemic activity in sorghum panicles, necessitating the need for multiple applications from first anthesis to the end of flowering, whereas acibenzolar-S-methyl is most effective when applied 4 days before flowering. The flat fan nozzles tested in the trials provided higher levels of protection against C. africana and greater droplet deposition on panicles than the tested hollow cone nozzles. Application of triadimenol by a fixed wing aircraft was as efficacious as application through a tractor-mounted boom spray.
Resumo:
Ergot, caused by Claviceps africana, has emerged as a serious threat to sorghum hybrid seed production worldwide. In the absence of gene-for-gene-based qualitative resistance in commercial cultivars, varieties with high pollen production that can escape ergot infection are preferred. Recent demonstration of differences in ergot susceptibility among male-sterile lines has indicated the presence of partial resistance. Using chitin-specific fluorescin-isothiocyanate-conjugated wheat germ agglutin and callose-specific aniline blue, this study investigated the process of sorghum ovary colonization by C. africana. Conidia germinated within 24 h after inoculation (a.i.); the pathogen was established in the ovary by 79 h a.i., and at least half of the ovary was converted into sphacelial tissue by 120 h a.i. Changes in fungal cell wall chitin content and strategic callose deposition in the host tissue were associated with penetration and invasion of the ovary. The rate of ovary colonization differed in three male-sterile lines that also differed in ergot susceptibility. This work demonstrates a possible histological basis for partial resistance in male-sterile sorghum lines that could lay the foundation for variety improvement through further breeding and selection.
Resumo:
An approach based on a linear rate of increase in harvest index (141) with time after anthesis has been used as a simple means-to predict grain growth and yield in many crop simulation models. When applied to diverse situations, however, this approach has been found to introduce significant error in grain yield predictions. Accordingly, this study was undertaken to examine the stability of the HI approach for yield prediction in sorghum [Sorghum bicolor (L.) Moench]. Four field experiments were conducted under nonlimiting water. and N conditions. The experiments were sown at times that ensured a broad range in temperature and radiation conditions. Treatments consisted of two population densities and three genotypes varying in maturity. Frequent sequential harvests were used to monitor crop growth, yield, and the dynamics of 111. Experiments varied greatly in yield and final HI. There was also a tendency for lower HI with later maturity. Harvest index dynamics also varied among experiments and, to a lesser extent, among treatments within experiments. The variation was associated mostly with the linear rate of increase in HI and timing of cessation of that increase. The average rate of HI increase was 0.0198 d(-1), but this was reduced considerably (0.0147) in one experiment that matured in cool conditions. The variations found in IN dynamics could be largely explained by differences in assimilation during grain filling and remobilization of preanthesis assimilate. We concluded that this level of variation in HI dynamics limited the general applicability of the HI approach in yield prediction and suggested a potential alternative for testing.