921 resultados para Sonic hedgehog signaling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During early mouse neural development, bone morphogenetic protein (BMP) signaling patterns the dorsal neural tube and defines distinct neural progenitor cell domains along the dorsoventral axis. Unlike the ventral signaling molecule Sonic hedgehog, which has long-range activity by establishing a concentration gradient in the ventral neural tube, these dorsally expressed BMPs appear to have a limited domain of action. This raises questions as to how BMP activity is restricted locally and how restricted BMP signaling directs dorsal neural patterning and differentiation. I hypothesize that BMPs are restricted in the dorsal neural tube for correct dorsoventral patterning. ^ Previous studies have shown that the positively charged basic amino acids located at the N-terminus of several BMPs are essential for heparin binding and diffusion. This provides a novel tool to address these questions. Here I adapted a UAS/GAL4 bigenic mouse system to control the ectopic expression of BMP4 and a mutant form of BMP4 that lacks a subset of the N-terminal basic amino acids. The target genes, UAS-Bmp4 and UAS-mBmp4 , were introduced into the Hprt locus by gene targeting in mouse embryonic stem cells. The expression of the GAL4 transactivator was driven by a roof plate specific Wnt1 promoter. ^ The bigenic mouse embryos exhibit phenotype variations, ranging from mid/hindbrain defects, hemorrhage, and eye abnormalities to vasculture formation. Embryonic death starts around E11.5 because of severe hemorrhage. The different expression levels of the activated transgene may account for the phenotype variation. Further marker analysis reveals that mutant BMP4 induces ectopic expression of the dorsal markers MSX1/2 and PAX7 in the ventral neural tube. In addition, the expression of the ventral neural marker NKX2.2 is affected by the expanded BMP4 activity, indicating that ectopic BMP signaling can antagonize ventral signaling. Comparison of the phenotypes of the Wnt1/ Bmp4 and Wnt1/mBmp4 bigenic embryos that express transgenes at the same level, respectively, shows that mutant BMP4 causes the expansion of dorsal neural fates ventrally while wild type BMP4 does not, suggesting that mutant BMP4 acts farther than wild type BMP4. Together, these data suggest that the N-terminus basic amino acid core controls BMP4 long-range activity in neural development, and that BMP signaling patterns the dorsal neural tube through a secondary signaling pathway that involves homeodomain transcription factors MSX1/2 and PAX7. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multitransmembrane protein Patched (PTCH) is the receptor for Sonic Hedgehog (Shh), a secreted molecule implicated in the formation of embryonic structures and in tumorigenesis. Current models suggest that binding of Shh to PTCH prevents the normal inhibition of the seven-transmembrane-protein Smoothened (SMO) by PTCH. According to this model, the inhibition of SMO signaling is relieved after mutational inactivation of PTCH in the basal cell nevus syndrome. Recently, PTCH2, a molecule with sequence homology to PTCH, has been identified. To characterize both PTCH molecules with respect to the various Hedgehog proteins, we have isolated the human PTCH2 gene. Biochemical analysis of PTCH and PTCH2 shows that they both bind to all hedgehog family members with similar affinity and that they can form a complex with SMO. However, the expression patterns of PTCH and PTCH2 do not fully overlap. While PTCH is expressed throughout the mouse embryo, PTCH2 is found at high levels in the skin and in spermatocytes. Because Desert Hedgehog (Dhh) is expressed specifically in the testis and is required for germ cell development, it is likely that PTCH2 mediates its activity in vivo. Chromosomal localization of PTCH2 places it on chromosome 1p33–34, a region deleted in some germ cell tumors, raising the possibility that PTCH2 may be a tumor suppressor in Dhh target cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teeth have been missing from birds (Aves) for at least 60 million years. However, in the chick oral cavity a rudiment forms that resembles the lamina stage of the mammalian molar tooth germ. We have addressed the molecular basis for this secondary loss of tooth formation in Aves by analyzing in chick embryos the status of molecular pathways known to regulate mouse tooth development. Similar to the mouse dental lamina, expression of Fgf8, Pitx2, Barx1, and Pax9 defines a potential chick odontogenic region. However, the expression of three molecules involved in tooth initiation, Bmp4, Msx1, and Msx2, are absent from the presumptive chick dental lamina. In chick mandibles, exogenous bone morphogenetic protein (BMP) induces Msx expression and together with fibroblast growth factor promotes the development of Sonic hedgehog expressing epithelial structures. Distinct epithelial appendages also were induced when chick mandibular epithelium was recombined with a tissue source of BMPs and fibroblast growth factors, chick skin mesenchyme. These results show that, although latent, the early signaling pathways involved in odontogenesis remain inducible in Aves and suggest that loss of odontogenic Bmp4 expression may be responsible for the early arrest of tooth development in living birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the well-characterised role of sonic hedgehog (Shh) in promoting interfollicular basal cell proliferation and hair follicle downgrowth, the role of hedgehog signalling during epidermal stem cell fate remains largely uncharacterised. In order to determine whether the three vertebrate hedgehog molecules play a role in regulating epidermal renewal we overexpressed sonic (Shh), desert (Dhh) and Indian (Ihh) hedgehog in the basal cells of mouse skin under the control of the human keratin 14 promoter. We observed no overt epidermal morphogenesis phenotype in response to Ihh overexpression, however Dhh overexpression resulted in a range of embryonic and adult skin manifestations indistinguishable from Shh overexpression. Two distinct novel phenotypes were observed amongst Shh and Dhh transgenics, one exhibiting epidermal progenitor cell hyperplasia with the other displaying a complete loss of epidermal tissue renewal indicating deregulation of stem cell activity. These data suggest that correct temporal regulation of hedgehog activity is a key factor in ensuring epidermal stem cell maintenance. In addition, we observed Shh and Dhh transgenic skin from both phenotypes developed lesions reminiscent of human basal cell carcinoma (BCC), indicating that BCCs can be generated despite the loss of much of the proliferative (basal) compartment. These data suggest the intriguing possibility that BCC can arise outside the stem cell population. Thus the elucidation of Shh (and Dhh) target gene activation in the skin will likely identify those genes responsible for increasing the proliferative potential of epidermal basal cells and the mechanisms involved in regulating epidermal stem cell fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germline mutations of APC in patients with Turcot syndrome (colon cancer and medulloblastoma), was well as somatic mutations of APC, beta-catenin, and Axin in sporadic medulloblastomas (MBs) have shown the importance of WNT signaling in the pathogenesis of MB. A subset of children with MB have germline mutations of SUFU, a known inhibitor of Hedgehog signal transduction. A recent report suggested that murine Sufu can bind beta-catenin, export it from the nucleus, and thereby repress beta-catenin/T-cell factor (Tcf)-mediated transcription. We show that an MB-derived mutant of SUFU has lost the ability to decrease nuclear levels of beta-catenin, and cannot inhibit beta-catenin/Tcf-mediated transcription as compared to wild type SUFU. Our results suggest that loss of function of SUFU results in overactivity of both the Sonic Hedgehog, and the WNT signaling pathways, leading to excessive proliferation and failure to differentiate resulting in MB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The oncogene GLI1 is involved in the formation of basal cell carcinoma and other tumor types as a result of the aberrant signaling of the Sonic hedgehog-Patched pathway. In this study, we have identified alternative GLI1 transcripts that differ in their 5' untranslated regions (UTRs) and are generated by exon skipping. These are denoted (alpha -UTR, beta -UTR, and gamma -UTR according to the number of noncoding exons possessed (three, two, and one, respectively). The alpha- and beta -UTR forms represent the major Gli1 transcripts expressed in mouse tissues, whereas the gamma -UTR is present at relatively low levels but is markedly induced in mouse skin treated with 12-O-tetradecanoylphorbol 13-acetate, Transcripts corresponding to the murine beta and gamma forms were identified in human tissues, but significantly, only the gamma -UTR form was present in basal cell carcinomas and in proliferating cultures of a keratinocyte cell line. Flow cytometry analysis determined that the gamma -UTR variant expresses a heterologous reporter gene 14-23-fold higher than the alpha -UTR and 5-13-fold higher than the beta -UTR in a variety of cell types. Because expression of the gamma -UTR variant correlates with proliferation, consistent with a role for GLI1 in growth promotion, up-regulation of GLI1 expression through skipping of 5' noncoding exons may be an important tumorigenic mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has long been known from work in both Drosophila and vertebrate systems that the hedgehog signalling pathway is pivotal to embryonic development, but the past 5 years has seen an increase in our understanding of how members of this pathway are crucial to the processes of tumorigenesis. This important link was firmly established with the discovery that mutations in the gene encoding the hedgehog receptor molecule patched are responsible for both familial and sporadic forms of basal cell carcinoma (BCC), as well as a number of other tumour types. It is now known that a number of key members of the hedgehog cascade are involved in tumorigenesis, and dysregulation of this pathway appears to be a key element in the aetiology of a range of tumours. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Members of the GATA transcription factor gene family have been implicated in a variety of developmental processes, including that of the vertebrate central nervous system. However, the role of GATA proteins in spinal cord development remains unresolved. In this study, we investigated the expression and function of two GATA proteins, GATA2 and GATA3, in the developing chick spinal cord. We show that both proteins are expressed by a distinct subpopulation of ventral interneurons that share the same dorsoventral position as CHX10-positive V2 interneurons. However, no coexpression is observed between the two GATA proteins and CHX10. By in vivo notochord grafting and cyclopamine treatment, we demonstrate that the spatially restricted pattern of GATA3 expression is regulated, at least in part, by the signaling molecule Sonic hedgehog. In addition, we further show that Sonic hedgehog induces GATA3 expression in a dose-dependent manner. Using in ovo electroporations, we also demonstrate that GATA2 is upstream of GATA3 in the same epigenetic cascade and that GATA3 is capable of inducing GATA2 expression in vivo. Furthermore, the ectopically expressed GATA proteins can repress differentiation of other ventral cell fates, but not the development of progenitor populations identified by PAX protein expression. Taken together, our findings strongly suggest an important role for GATA2 and GATA3 proteins in the establishment of a distinct ventral interneuron subpopulation in the developing chick spinal cord. (C) 2002 Elsevier Science (USA).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skin appendages such as teeth and hair share several common signaling pathways. The nuclear factor I C (NFI-C) transcription factor has been implicated in tooth development, but a potential role in hair growth had not been assessed. In this study we found that NFI-C regulates the onset of the hair growth cycle. NFI-C(-/-) mice were delayed in the transition from the telogen to anagen phase of the hair follicle cycle after either experimental depilation or spontaneous hair loss. Lack of NFI-C resulted in delayed induction of the sonic hedgehog, Wnt5a, and Lef1 gene expression, which are key regulators of the hair follicle growth initiation. NFI-C(-/-) mice also showed elevated levels of transforming growth factor β1 (TGF-β1), an inhibitor of keratinocyte proliferation, and of the cell cycle inhibitor p21 at telogen. Reduced expression of Ki67, a marker of cell proliferation, was noted at the onset of anagen, indicating impaired activation of the hair progenitor cells. These findings implicate NFI-C in the repression of TGF-β1 signaling during telogen stage, resulting in the delay of progenitor cell proliferation and hair follicle regeneration in NFI-C-deficient mice. Taken together with prior observations, these findings also designate NFI-C as a regulator of adult progenitor cell proliferation and of postnatal tissue growth or regeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The origin and evolution of the complex regulatory landscapes of some vertebrate developmental genes, often spanning hundreds of Kbp and including neighboring genes, remain poorly understood. The Sonic Hedgehog (Shh) genomic regulatory block (GRB) is one of the best functionally characterized examples, with several discrete enhancers reported within its introns, vast upstream gene-free region and neighboring genes (Lmbr1 and Rnf32). To investigate the origin and evolution of this GRB, we sequenced and characterized the Hedgehog (Hh) loci from three invertebrate chordate amphioxus species, which share several early expression domains with Shh. Using phylogenetic footprinting within and between chordate lineages, and reporter assays in zebrafish probing >30 Kbp of amphioxus Hh, we report large sequence and functional divergence between both groups. In addition, we show that the linkage of Shh to Lmbr1 and Rnf32, necessary for the unique gnatostomate-specific Shh limb expression, is a vertebrate novelty occurred between the two whole-genome duplications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dorsoventral axis of the eye is determined prior to optic cup invagination. A variety of signaling pathways have been implicated in the maintenance of the optic dorsoventral axis, including, but not limited to, bone morphogenetic protein 4, Sonic Hedgehog and retinoic acid. Here, we investigated the possible contribution of Wnt ligands to the establishment or maintenance of the optic axis by analyzing their expression pattern during early chick optic development. We performed in situ hybridization of Wnt-1, Wnt-3a, Wnt-4, and Wnt-5a during the optic vesicle, early optic cup and established optic cup stages and focused our analysis on the optic region. Our data showed that Wnt-5a, but none of the others, is expressed in the dorsal region of the eye starting from the Hamburger and Hamilton stage 14 (HH14). These results are supported by cryosections of the labeled optic region, which further reveal that Wnt-5a is expressed only in the dorsal retinal pigmented epithelium. Thus, we propose that Wnt-5a is a marker for dorsal retinal pigmented epithelium in chick embryos from HH14 to HH19.