998 resultados para Solar flare
Resumo:
With the variations of solar activity, solar EUV and X-ray radiations change over different timescales (e.g., from solar cycle variation to solar flare burst). Since solar EUV and X-ray radiations are the primary energy sources for the ionosphere, theirs variations undoubtedly produce significant and complicated effects on the ionosphere. So the variations of solar activity significantly affect the ionosphere. It is essential for both ionospheric theory and applications to study solar activity effects on the ionosphere. The study about solar activity variations of the ionosphere is an important part of the ionospheric climatology. It can enhance the understanding for the basic processes in the ionosphere, ionospheric structure and its change, ionosphere/thermosphere coupling, and so on. As for applications, people need sufficient knowledges about solar activity variations of the ionosphere in order to improve ionospheric models so that more accurate forecast for the ionospheric environments can be made. Presently, the whole image about the modalities of ionospheric solar activity variations is still unknown, and related mechanisms still cannot be well understood. This paper is about the effects of the 11-year change in solar activity to the low- and mid-latitude ionosphere. We use multi-type ionospheric observations and model to investigate solar activity effects on the electron density and ionospheric spatial structure, and we focus on discussing some related mechanisms. The main works are as follows: Firstly, solar activity variations of ionospheric peak electron density (NmF2) around 1400 LT were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trend of NmF2 with F107 depends on latitudes and seasons. There is obvious saturation trend in low latitudes in all seasons; while in middle latitudes, NmF2 increases linearly with F107 in winter but saturates with F107 at higher solar activity levels in the other seasons. We calculated the photochemical equilibrium electron density to discuss the effects induced by the changes of neutral atmosphere and dynamics processes on the solar activity variations of NmF2. We found that: (1) Seasonal variation of neutral atmosphere plays an important role in the seasonal difference of the solar activity variations of NmF2 in middle latitudes. (2) Less [O]/[N2] and higher neutral temperature are important for the saturation effect in summer, and the increase of vibrational excited N2 is also important for the saturation effect. (3) Dynamics processes can significantly weaken the increase of NmF2 when solar activity enhances, which is also a necessary factor for the saturation effect. Secondly, solar activity variations of nighttime NmF2 were investigated using ionosonde observations in the 120°E sector. The result shows that the variation trends of NmF2 with F107 in nighttime are different from that in daytime in some cases, and the nighttime variation trends depend on seasons. There is linear increase trend in equinox nighttime, and saturation trend in summer nighttime, while the increase rate of NmF2 with F107 increases when solar activity enhances in winter nighttime (we term it with “amplification trend”). We discussed the possible mechanisms which affect the solar activity variations of nighttime NmF2. The primary conclusions are as follows: (1) In the equatorial ionization anomaly (EIA) crest region, the plasma influx induced by the pre-reversal enhancement (PRE) results in the change of the variation trend between NmF2 and F107 from “saturation” to “linear” after sunset in equinoxes and winter; while the recombination process at the F2-peak is the primary factor that affects the variation trend of NmF2 with F107 in middle latitudes. (2) The recombination coefficient at the F2-peak height reaches its maximum at moderate solar activity level in winter nighttime, which induces NmF2 attenuates more quickly at moderate solar activity level. This is the main reason for the amplification trend. (3) The change of the recombination process at the F2-peak with solar activity depends on the increases of neutral parameters (temperature, density et al.) and the F2-peak height (hmF2). The seasonal differences in the changes of neutral atmosphere and hmF2 with solar activity are the primary reasons for the seasonal difference in the variation trend of nighttime NmF2 with F107. Finally, we investigated the solar activity dependence of the topside ionosphere in low latitudes using ROCSAT-1 satellite (at 600 km altitude) observations. The primary results and conclusions are as follows: (1) Latitudinal distribution of the plasma density is local time, seasonal, and solar activity dependent. In daytime, there is a plasma density peak at the dip equator. The peak is obviously enhanced at high solar activity level, and the strength of the peak strongly depends on seasons. While at sunset, two profound plasma density peaks (double-peak structure) are found in solar maximum equinox months. (2) Local time dependence of the latitudinal distribution is due to the local time variation of the equatorial dynamics processes. Double-peak structure is attributed to the fountain effect induced by strong PRE. Daytime peak enhances with solar activity since the plasma density increases with solar activity more strongly at the dip equator due to the equatorial vertical drift, and its seasonal dependence is mainly due to the seasonal variations of neutral density and the equatorial vertical drift. In the sunset sector, seasonal and solar activity dependences of the latitudinal distribution are related to the seasonal and solar activity variations of PRE. (3) The variation trend of the plasma density with solar activity shows local time, seasonal, and latitudinal differences. That is different from the changeless amplification trend at the DMSP altitude (840 km). Profound saturation effect is found in the dip equator region at equinox sunset. This saturation effect in the topside ionosphere is realated to the increase of PRE with solar activity. Solar activity variation trend of the topside plasma density was discussed quantitatively by Chapman-α function. The result shows that the effect induced by the change of the scale height is dominant at high altitudes; while the variation trend of ROCSAT-1 plasma density with solar activity is suggested to be related to the changes of the peak height, the scale height, and the peak electron density with solar activity.
Resumo:
The ionosphere is the ionized component of the Earth's upper atmosphere. Solar EUV radiation is the source of ionospheric ionization. Thus the ionosphere is affected strongly by the variations in solar radiation. Solar flares and solar eclipses can induce remarkable short time changes in solar radiation: the solar radiation would increase suddenly during solar flares and decrease significantly during solar eclipses. Solar flare and eclipse events not only affect directly the photochemical processes, but also affect the dynamic processes, and even affect the neutral atmosphere, which is strongly coupled with the ionosphere. The study on the ionospheric response to solar flares and eclipses can advance our knowledge on the ionosphere and its photochemical and dynamic processes and help us to evaluate the ionospheric parameters (such as ion loss coefficients). In addition, the study on the ionospheric responses to solar flares and eclipses is an important part of the ionospheric space weather, which can provide guides for space weather monitoring. This thesis devotes to the study on the ionospheric responses to solar flares and solar eclipses. I have developed two models to simulate the variations of solar EUV radiation during solar flares and solar eclipses, and involved in developing a 2D mid- and low-latitude ionospheric model. On the basis of some observed data and the ionospheric model, I study the temporal and spatial variations of the ionosphere during solar flares and eclipses, and investigate the influences of solar activity, solar zenith angle, neutral gas density, and magnetic dip angle on the ionospheric responses to solar flares and solar eclipses. The main points of my works and results are summarized as follows. 1. The ionospheric response to the X17.2 solar flare on October 28, 2003 was modeled via using a one-dimension theoretical ionospheric model. The simulated variation of TEC is in accordance with the observations, though there are some differences in the amplitude of the variation. Then I carried out a series of simulations to explore the local time and seasonal dependences of the ionospheric responses to solar flares. These calculations show that the ionospheric responses are largely related with the solar zenith angle (SZA). During the daytime (small SZA), most of the increases in electron density occur at altitudes below 300 km with a peak at around 115 km; whereas around sunrise and sunset (SZA>90°), the strongest ionospheric responses occur at much higher altitudes. The TEC increases slower at sunrise than at sunset, which is caused by the difference in the evolution of SZA at sunrise and sunset: SZA decreases with time at sunrise and increase with time at sunset. The ionospheric response is largest in summer and smallest in winter, which is also related to the seasonal difference of SZA. 2. Based on the observations from the ionosondes in Europe and the ionospheric model, I investigated the differences of the ionosphere responses to solar eclipses between the E-layer and F1-layer. Both the observation and simulation show that the decrease in foF1 due to the solar eclipses is larger than that in foE. This effect is due to that the F1 region locates at the transition height between the atomic ion layer and the molecular ion layer. With the revised model of solar radiation during solar flares, our model calculates the radiations from both the inside and outside of photosphere. Large discrepancy can be found between the observations and the calculations with an unrevised model, while the calculations with the revised model consist with the observations. 3. I also explore the effects of the F2-layer height, local time, solar cycle, and magnetic dip angle on the ionospheric responses to solar eclipses via using an ionospheric model and study on the solar zenith angle and the dip dependences by analyzing the data derived from 23 ionosonde stations during seven eclipse events. Both the measured and simulated results show that these factors have significant effect on the ionospheric response. The larger F2-layer height causes the smaller decrease in foF2, which is because that the electron density response decreases with height. The larger dip results in the smaller eclipse effect on the F2 layer, because the larger dip would cause the more diffusion from the top ionosphere which can make up for the plasma loss. The foF2 response is largest at midday and decreases with the increasing SZA. The foF2 response is larger at high solar activity than at low solar activity. The simulated results show that the local time and solar activity discrepancy of the eclipse effect mainly attribute to the difference of the background neutral gas density. 4. I carried out a statistical study on the latitudinal dependence of the ionospheric response to solar eclipses and modeled this latitudinal dependence by the ionospheric model. Both the observations and simulations show that the foF2 and TEC responses have the same latitudinal dependence: the eclipse effects on foF2 and TEC are smaller at low latitudes than at middle latitudes; at the middle latitudes (>40°), the eclipse effect decreases with increasing latitude. In addition, the simulated results show the change in electron temperature at the heights of above 300 km of low latitudes is much smaller than that at the same heights of middle latitudes. This is due to the smaller decrease in photoelectron production rate at its conjugate low heights. 5. By analyzing the observed data during the October 3, 2005 solar eclipse, I find some significant disturbances in the conjugate region of the eclipse region, including a decrease in Te, an increase in foF2 and TEC, and an uprising in hmF2. I also simulated the ionosphere behavior during this eclipse using a mid-low latitude ionospheric model. The simulations reproduce the measured ionospheric disturbances mentioned above in the conjugated hemisphere. The simulations show that the great loss of arriving photoelectron heat from the eclipse region is the principal driving source for the disturbances in the conjugate hemisphere.
Resumo:
We measured the midlatitude daytime ionospheric D region electron density profile height variations in July and August 2005 near Duke University by using radio atmospherics (or sferics for short), which are the high-power, broadband very low frequency (VLF) signals launched by lightning discharges. As expected, the measured daytime D region electron density profile heights showed temporal variations quantitatively correlated with solar zenith angle changes. In the midlatitude geographical regions near Duke University, the observed quiet time heights decreased from ∼80 km near sunrise to ∼71 km near noon when the solar zenith angle was minimum. The measured height quantitative dependence on the solar zenith angle was slightly different from the low-latitude measurement given in a previous work. We also observed unexpected spatial variations not linked to the solar zenith angle on some days, with 15% of days exhibiting regional differences larger than 0.5 km. In these 2 months, 14 days had sudden height drops caused by solar flare X-rays, with a minimum height of 63.4 km observed. The induced height change during a solar flare event was approximately proportional to the logarithm of the X-ray flux. In the long waveband (wavelength, 1-8 Å), an increase in flux by a factor of 10 resulted in 6.3 km decrease of the height at the flux peak time, nearly a perfect agreement with the previous measurement. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short, rather than the long, wavelength X-ray flux changes. © 2010 by the American Geophysical Union.
Resumo:
The primary objective of this work is the analysis and interpretation of coronal observations of Capella obtained in 1999 September with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory and the Extreme Ultraviolet Explorer (EUVE). He-like lines of O (O vii) are used to derive a density of 1.7 x 10(10) cm(-3) for the coronae of the binary, consistent with the upper limits derived from Fe xxi, Ne ix and Mg xi line ratios. Previous estimates of the electron density based on Fe xxi should be considered as upper limits. We construct emission measure distributions and compare the theoretical and observed spectra to conclude that the coronal material has a temperature distribution that peaks around 4-6 MK, implying that the coronae of Capella were significantly cooler than in the previous years. In addition, we present an extended line list with over 100 features in the 5-24 Angstrom wavelength range, and find that the X-ray spectrum is very similar to that of a solar flare observed with SMM. The observed to theoretical Fe xvii 15.012-Angstrom line intensity reveals that opacity has no significant effect on the line flux. We derive an upper limit to the optical depth, which we combine with the electron density to derive an upper limit of 3000 km for the size of the Fe xvii emitting region. In the same context, we use the Si iv transition region lines of Capella from HST/Goddard High-Resolution Spectrometer observations to show that opacity can be significant at T = 10(5) K, and derive a path-length of approximate to 75 kin for the transition region. Both the coronal and transition region observations are consistent with very small emitting regions, which could be explained by small loops over the stellar surfaces.
Resumo:
L’utilisation d’une méthode d’assimilation de données, associée à un modèle de convection anélastique, nous permet la reconstruction des structures physiques d’une partie de la zone convective située en dessous d’une région solaire active. Les résultats obtenus nous informent sur les processus d’émergence des tubes de champ magnétique au travers de la zone convective ainsi que sur les mécanismes de formation des régions actives. Les données solaires utilisées proviennent de l’instrument MDI à bord de l’observatoire spatial SOHO et concernent principalement la région active AR9077 lors de l’ ́évènement du “jour de la Bastille”, le 14 juillet 2000. Cet évènement a conduit à l’avènement d’une éruption solaire, suivie par une importante éjection de masse coronale. Les données assimilées (magnétogrammes, cartes de températures et de vitesses verticales) couvrent une surface de 175 méga-mètres de coté acquises au niveau photosphérique. La méthode d’assimilation de données employée est le “coup de coude direct et rétrograde”, une méthode de relaxation Newtonienne similaire à la méthode “quasi-linéaire inverse 3D”. Elle présente l’originalité de ne pas nécessiter le calcul des équations adjointes au modèle physique. Aussi, la simplicité de la méthode est un avantage numérique conséquent. Notre étude montre au travers d’un test simple l’applicabilité de cette méthode à un modèle de convection utilisé dans le cadre de l’approximation anélastique. Nous montrons ainsi l’efficacité de cette méthode et révélons son potentiel pour l’assimilation de données solaires. Afin d’assurer l’unicité mathématique de la solution obtenue nous imposons une régularisation dans tout le domaine simulé. Nous montrons enfin que l’intérêt de la méthode employée ne se limite pas à la reconstruction des structures convectives, mais qu’elle permet également l’interpolation optimale des magnétogrammes photosphériques, voir même la prédiction de leur évolution temporelle.
Resumo:
The global atmospheric electric circuit is driven by thunderstorms and electrified rain/shower clouds and is also influenced by energetic charged particles from space. The global circuit maintains the ionosphere as an equipotential at∼+250 kV with respect to the good conducting Earth (both land and oceans). Its “load” is the fair weather atmosphere and semi-fair weather atmosphere at large distances from the disturbed weather “generator” regions. The main solar-terrestrial (or space weather) influence on the global circuit arises from spatially and temporally varying fluxes of galactic cosmic rays (GCRs) and energetic electrons precipitating from the magnetosphere. All components of the circuit exhibit much variability in both space and time. Global circuit variations between solar maximum and solar minimum are considered together with Forbush decrease and solar flare effects. The variability in ion concentration and vertical current flow are considered in terms of radiative effects in the troposphere, through infra-red absorption, and cloud effects, in particular possible cloud microphysical effects from charging at layer cloud edges. The paper identifies future research areas in relation to Task Group 4 of the Climate and Weather of the Sun-Earth System (CAWSES-II) programme.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
"January 1988"--Cover.
Resumo:
Solar flares were first observed by plain eye in white light by William Carrington in England in 1859. Since then these eruptions in the solar corona have intrigued scientists. It is known that flares influence the space weather experienced by the planets in a multitude of ways, for example by causing aurora borealis. Understanding flares is at the epicentre of human survival in space, as astronauts cannot survive the highly energetic particles associated with large flares in high doses without contracting serious radiation disease symptoms, unless they shield themselves effectively during space missions. Flares may be at the epicentre of man s survival in the past as well: it has been suggested that giant flares might have played a role in exterminating many of the large species on Earth, including dinosaurs. Having said that prebiotic synthesis studies have shown lightning to be a decisive requirement for amino acid synthesis on the primordial Earth. Increased lightning activity could be attributed to space weather, and flares. This thesis studies flares in two ways: in the spectral and the spatial domain. We have extracted solar spectra using three different instruments, namely GOES (Geostationary Operational Environmental Satellite), RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and XSM (X-ray Solar Monitor) for the same flares. The GOES spectra are low resolution obtained with a gas proportional counter, the RHESSI spectra are higher resolution obtained with Germanium detectors and the XSM spectra are very high resolution observed with a silicon detector. It turns out that the detector technology and response influence the spectra we see substantially, and are important to understanding what conclusions to draw from the data. With imaging data, there was not such a luxury of choice available. We used RHESSI imaging data to observe the spatial size of solar flares. In the present work the focus was primarily on current solar flares. However, we did make use of our improved understanding of solar flares to observe young suns in NGC 2547. The same techniques used with solar monitors were applied with XMM-Newton, a stellar X-ray monitor, and coupled with ground based Halpha observations these techniques yielded estimates for flare parameters in young suns. The material in this thesis is therefore structured from technology to application, covering the full processing path from raw data and detector responses to concrete physical parameter results, such as the first measurement of the length of plasma flare loops in young suns.
Resumo:
In this thesis acceleration of energetic particles at collisionless shock waves in space plasmas is studied using numerical simulations, with an emphasis on physical conditions applicable to the solar corona. The thesis consists of four research articles and an introductory part that summarises the main findings reached in the articles and discusses them with respect to theory of diffusive shock acceleration and observations. This thesis gives a brief review of observational properties of solar energetic particles and discusses a few open questions that are currently under active research. For example, in a few large gradual solar energetic particle events the heavy ion abundance ratios and average charge states show characteristics at high energies that are typically associated with flare-accelerated particles, i.e. impulsive events. The role of flare-accelerated particles in these and other gradual events has been discussed a lot in the scientific community, and it has been questioned if and how the observed features can be explained in terms of diffusive shock acceleration at shock waves driven by coronal mass ejections. The most extreme solar energetic particle events are the so-called ground level enhancements where particle receive so high energies that they can penetrate all the way through Earth's atmosphere and increase radiation levels at the surface. It is not known what conditions are required for acceleration into GeV/nuc energies, and the presence of both very fast coronal mass ejections and X-class solar flares makes it difficult to determine what is the role of these two accelerators in ground level enhancements. The theory of diffusive shock acceleration is reviewed and its predictions discussed with respect to the observed particle characteristics. We discuss how shock waves can be modeled and describe in detail the numerical model developed by the author. The main part of this thesis consists of the four scientific articles that are based on results of the numerical shock acceleration model developed by the author. The novel feature of this model is that it can handle complex magnetic geometries which are found, for example, near active regions in the solar corona. We show that, according to our simulations, diffusive shock acceleration can explain the observed variations in abundance ratios and average charge states, provided that suitable seed particles and magnetic geometry are available for the acceleration process in the solar corona. We also derive an injection threshold for diffusive shock acceleration that agrees with our simulation results very well, and which is valid under weakly turbulent conditions. Finally, we show that diffusive shock acceleration can produce GeV/nuc energies under suitable coronal conditions, which include the presence of energetic seed particles, a favourable magnetic geometry, and an enhanced level of ambient turbulence.
Resumo:
The first observations of solar X-rays date back to late 1940 s. In order to observe solar X-rays the instruments have to be lifted above the Earth s atmosphere, since all high energy radiation from the space is almost totally attenuated by it. This is a good thing for all living creatures, but bad for X-ray astronomers. Detectors observing X-ray emission from space must be placed on-board satellites, which makes this particular discipline of astronomy technologically and operationally demanding, as well as very expensive. In this thesis, I have focused on detectors dedicated to observing solar X-rays in the energy range 1-20 keV. The purpose of these detectors was to measure solar X-rays simultaneously with another X-ray spectrometer measuring fluorescence X-ray emission from the Moon surface. The X-ray fluorescence emission is induced by the primary solar X-rays. If the elemental abundances on the Moon were to be determined with fluorescence analysis methods, the shape and intensity of the simultaneous solar X-ray spectrum must be known. The aim of this thesis is to describe the characterization and operation of our X-ray instruments on-board two Moon missions, SMART-1 and Chandrayaan-1. Also the independent solar science performance of these two almost similar X-ray spectrometers is described. These detectors have the following two features in common. Firstly, the primary detection element is made of a single crystal silicon diode. Secondly, the field of view is circular and very large. The data obtained from these detectors are spectra with a 16 second time resolution. Before launching an instrument into space, its performance must be characterized by ground calibrations. The basic operation of these detectors and their ground calibrations are described in detail. Two C-flares are analyzed as examples for introducing the spectral fitting process. The first flare analysis shows the fit of a single spectrum of the C1-flare obtained during the peak phase. The other analysis example shows how to derive the time evolution of fluxes, emission measures (EM) and temperatures through the whole single C4 flare with the time resolution of 16 s. The preparatory data analysis procedures are also introduced in detail. These are required in spectral fittings of the data. A new solar monitor design equipped with a concentrator optics and a moderate size of field of view is also introduced.
Resumo:
The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 ≤ Z ≤ 28) and energy spectra (5 to 15 MeV /nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements.
The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 ≤ Z ≤ 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events.
The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: The elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events.
The four-flare average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggests that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.
Resumo:
Observations of solar energetic particles (SEPs) from 22 solar flares in the 1977-1982 time period are reported. The observations were made by the Cosmic Ray Subsystem on board the Voyager 1 and 2 spacecraft. SEP abundances have been obtained for all elements with 3 ≤ Z ≤ 30 except Li, Be, B. F, Sc, V, Co and Cu. for which upper limits have been obtained. Statistically meaningful abundances of several rare elements (e.g., P, Cl, K, Ti, Mn) have been determined for the first time, and the average abundances of the more abundant elements have been determined with improved precision, typically a factor of three better than the best previous determinations.
Previously reported results concerning the dependence of the fractionation of SEPs relative to photosphere on first ionization potential (FIP) have been confirmed and amplified upon with the new data. The monotonic Z-dependence of the variation between flares noted by earlier studies was found to be interpretable as a fractionation, produced by acceleration of the particles from the corona and their propagation through interplanetary space, which is ordered by the ionic charge-to-mass ratio Q/ M of the species making up the SEPs. It was found that Q/M is the primary organizing parameter of acceleration and propagation effects in SEPs, as evidenced by the dependence on Q/M of time, spatial and energy dependence within flares and of the abundance variability from flare to flare.
An unfractionated coronal composition was derived by applying a simple Q/M fractionation correction to the observed average SEP composition, to simultaneously correct for all Q/M-correlated acceleration/propagation fractionation of SEPs. The resulting coronal composition agrees well with current XUV/X-ray spectroscopic measurements of coronal composition but is of much higher precision and is available for a much larger set of elements. Compared to spectroscopic photospheric abundances, the SEP-derived corona appears depleted in C and somewhat enriched in Cr (and possibly Ca and Ti).
An unfractionated photospheric composition was derived by applying a simple FIP fractionation correction to the derived coronal composition, to correct for the FIP-associated fractionation of the corona during its formation from photospheric material. The resulting composition agrees well with the photospheric abundance tabulation of Grevesse (1984) except for an at least 50% lower abundance of C and a significantly greater abundance of Cr and possibly Ti. The results support the Grevesse photospheric Fe abundance, about 50% higher than meteoritic and earlier solar values. The SEP-derived photospheric composition is not generally of higher precision than the available spectroscopic data, but it relies on fewer physical parameters and is available for some elements (C, N, Ne, Ar) which cannot be measured spectroscopically in the photosphere.