889 resultados para Solar Thermal Collector


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solar thermal system with seasonal borehole storage for heating of a residential area in Anneberg, Sweden, approximately 10 km north of Stockholm, has been in operation since late 2002. Originally, the project was part of the EU THERMIE project “Large-scale Solar Heating Systems for Housing Developments” (REB/0061/97) and was the first solar heating plant in Europe with borehole storage in rock not utilizing a heat pump. Earlier evaluations of the system show lower performance than the preliminary simulation study, with residents complaining of a high use of electricity for domestic hot water (DHW) preparation and auxiliary heating. One explanation mentioned in the earlier evaluations is that the borehole storage had not yet reached “steady state” temperatures at the time of evaluation. Many years have passed since then and this paper presents results from a new evaluation. The main aim of this work is to evaluate the current performance of the system based on several key figures, as well as on system function based on available measurement data. The analysis show that though the borehole storage now has reached a quasi-steady state and operates as intended, the auxiliary electricity consumption is much higher than the original design values largely due to high losses in the distribution network, higher heat loads as well as lower solar gains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Solar HeatIntegration NEtwork (SHINE) is a European research school in which 13 PhDstudents in solar thermal technologies are funded by the EU Marie-Curie program.It has five PhD course modules as well as workshops and seminars dedicated to PhDstudents both within the project as well as outside of it. The SHINE researchactivities focus on large solar heating systems and new applications: ondistrict heating, industrial processes and new storage systems. The scope ofthis paper is on systems for district heating for which there are five PhDstudents, three at universities and two at companies. The PhD students allstarted during the early part of 2014 and their initial work has concentratedon literature studies and on setting up models and data collection to be usedfor validation purposes. The PhD students will complete their studies in2017-18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such technologies. These are associated with high system and installation costs, significant system complexity, and lack of knowledge of system implementation and expected performance. A sorption heat pump module that can be integrated directly into a solar thermal collector has thus been developed in order to tackle the aforementioned market barriers. This has been designed for the development of cost-effective pre-engineered solar energy system kits that can provide both heating and cooling. This thesis summarises the characterisation studies of the operation of individual sorption modules, sorption module integrated solar collectors and a full solar heating and cooling system employing sorption module integrated collectors. Key performance indicators for the individual sorption modules showed cooling delivery for 6 hours at an average power of 40 W and a temperature lift of 21°C. Upon integration of the sorption modules into a solar collector, measured solar radiation energy to cooling energy conversion efficiencies (solar cooling COP) were between 0.10 and 0.25 with average cooling powers between 90 and 200 W/m2 collector aperture area. Further investigations of the sorption module integrated collectors implementation in a full solar heating and cooling system yielded electrical cooling COP ranging from 1.7 to 12.6 with an average of 10.6 for the test period. Additionally, simulations were performed to determine system energy and cost saving potential for various system sizes over a full year of operation for a 140 m2 single-family dwelling located in Madrid, Spain. Simulations yielded an annual solar fraction of 42% and potential cost savings of €386 per annum for a solar heating and cooling installation employing 20m2 of sorption integrated collectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new concept for a solar thermal electrolytic process was developed for the production of H-2 from water. A metal oxide is reduced to a lower oxidation state in air with concentrated solar energy. The reduced oxide is then used either as an anode or solute for the electrolytic production of H-2 in either an aqueous acid or base solution. The presence of the reduced metal oxide as part of the electrolytic cell decreases the potential required for water electrolysis below the ideal 1.23 V required when H-2 and O-2 evolve at 1 bar and 298 K. During electrolysis, H-2 evolves at the cathode at 1 bar while the reduced metal oxide is returned to its original oxidation state, thus completing the H-2 production cycle. Ideal sunlight-to-hydrogen thermal efficiencies were established for three oxide systems: Fe2O3-Fe3O4, Co3O4-CoO, and Mn2O3-Mn3O4. The ideal efficiencies that include radiation heat loss are as high or higher than corresponding ideal values reported in the solar thermal chemistry literature. An exploratory experimental study for the iron oxide system confirmed that the electrolytic and thermal reduction steps occur in a laboratory scale environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Fresnel collectors are identified as a technology that should play a main role in order to reduce cost of Concentrating Solar Power. An optical and thermal analysis of the different blocks of the solar power plant is carried out, where Fresnel arrays are compared with the most extended linear technology: parabolic trough collectors. It is demonstrated that the optical performance of Fresnel array is very close to that of PTC, with similar values of maximum flux intensities. In addition, if the heat carrier fluid flows in series by the tubes of the receiver, relatively high thermal efficiencies are achieved. Thus, an annual solar to electricity efficiency of 19% is expected, which is similar to the state of the art in PTCs; this is done with a reduction of costs, thanks to lighter structures, that drives to an estimation of LCOE of around 6.5 c€/kWh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar heating of potable water has traditionally been accomplished through the use of solar thermal (ST) collectors. With the recent increases in availability and lower cost of photovoltaic (PV) panels, the potential of coupling PV solar arrays to electrically heated domestic hot water (DHW) tanks has been considered. Additionally, innovations in the SDHW industry have led to the creation of photovoltaic/thermal (PV/T) collectors, which heat water using both electrical and thermal energy. The current work compared the performance and cost-effectiveness of a traditional solar thermal (ST) DHW system to PV-solar-electric DHW systems and a PV/T DHW system. To accomplish this, a detailed TRNSYS model of the solar hot water systems was created and annual simulations were performed for 250 L/day and 325 L/day loads in Toronto, Vancouver, Montreal, Halifax, and Calgary. It was shown that when considering thermal performance, PV-DHW systems were not competitive when compared to ST-DHW and PVT-DHW systems. As an example, for Toronto the simulated annual solar fractions of PV-DHW systems were approximately 30%, while the ST-DHW and PVT-DHW systems achieved 65% and 71% respectively. With current manufacturing and system costs, the PV-DHW system was the most cost-effective system for domestic purposes. The capital cost of the PV-DHW systems were approximately $1,923-$2,178 depending on the system configuration, and the ST-DHW and PVT system were estimated to have a capital cost of $2,288 and $2,373 respectively. Although the capital cost of the PVT-DHW system was higher than the other systems, a Present Worth analysis for a 20-year period showed that for a 250 L/day load in Toronto the Present Worth of the PV/T system was approximately $4,597, with PV-DHW systems costing approximately $7,683-$7,816 and the ST-DHW system costing $5,238.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract No. EG-77-C-01-4042."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the results of a series of telephone interviews with groups of users of information on solar thermal electric power. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is one of ten discussing study results. Results from five solar thermal electric power groups of respondents are analyzed in this report: DOE-funded researchers, non-DOE-funded researchers, representatives of utilities, electric power engineers, and educators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Work Performed Under Contract No. EY-76-C-03-1108."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Prepared for the U.S. Dept. of Energy, under contract DE-AC04-76-DP00789."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued in parts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report year ends Sept. 30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued in parts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on: Fiscal year 1986.