846 resultados para Solar Heating Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the frame of the project REBUS, "Competitive solar heating systems for residential buildings", which is financed by Nordic Energy Research, a new type of compact solar combisystem with high degree of prefabrication was developed. A hydraulic and control concept was designed with the goal to get highest system efficiency for use with either a condensing natural gas boiler or a pellet boiler. Especially when using the potential of high peak power of modern condensing natural gas boilers, a new operation strategy of a natural gas boiler/solar combisystem can increase the energy savings of a small solar combisystem by about 80% compared to conventional operation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The memebers of IEA (International Energy Agency) Task 14 (Advaced Active Solar Systems) met in Rome during January 1993. The latest developments in several countries were presented and discussed during this meeting. This report describes briefly the recent work carried out on small scale systems in the Domestic Hot Water (DHW) working group of Task 14, as reported by the representatives from Canada, Denmark, Germany, Holland and Switzerland. Klaus Lorenz, SERC, attended the meeting as observer and presented our work on small-tube heat exchangers. Several participants expressed their interest. A summary of his presentation is included in this report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this project is to develop an ESES lab on a full scale system. The solar combisystem used is available most of the time and is only used twice a year to carry out some technical courses. At the moment, there are no other laboratories about combisystems. The experiments were designed in a way to use the system to the most in order to help the students apply the theoretical knowledge in the solar thermal course as well as make them more familiar with solar systems components. The method adopted to reach this aim is to carry out several test sequences on the system, in order to help formulating at the end some educating experiments. A few tests were carried out at the beginning of the project just for the sake of understanding the system and figuring out if any additional measuring equipment is required. The level of these tests sequences was varying from a simple energy draw off or collector loop controller respond tests to more complicated tests, such as the use of the ‘collector’ heater to simulate the solar collector effect on the system. The tests results were compared and verified with the theoretical data wherever relevant. The results of the experiment about the use of the ‘collector’ heater instead of the collector were positively acceptable. Finally, the Lab guide was developed based on the results of these experiments and also the experience gotten while conducting them. The lab work covers the theories related to solar systems in general and combisystems in particular. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This is mainly because of the higher present cost of the solar thermal power plants, but also for the time that is needed in order to build them. Though economic attractiveness of different Concentrating technologies varies, still PV power dominates the market. The price of CSP is expected to drop significantly in the near future and wide spread installation of them will follow. The main aim of this project is the creation of different relevant case studies on solar thermal power generation and a comparison betwwen them. The purpose of this detailed comparison is the techno-economic appraisal of a number of CSP systems and the understanding of their behaviour under various boundary conditions. The CSP technologies which will be examined are the Parabolic Trough, the Molten Salt Power Tower, the Linear Fresnel Mirrors and the Dish Stirling. These systems will be appropriatly sized and simulated. All of the simulations aim in the optimization of the particular system. This includes two main issues. The first is the achievement of the lowest possible levelized cost of electricity and the second is the maximization of the annual energy output (kWh). The project also aims in the specification of these factors which affect more the results and more specifically, in what they contribute to the cost reduction or the power generation. Also, photovoltaic systems will be simulated under same boundary conditions to facolitate a comparison between the PV and the CSP systems. Last but not leats, there will be a determination of the system which performs better in each case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solar thermal system with seasonal borehole storage for heating of a residential area in Anneberg, Sweden, approximately 10 km north of Stockholm, has been in operation since late 2002. Originally, the project was part of the EU THERMIE project “Large-scale Solar Heating Systems for Housing Developments” (REB/0061/97) and was the first solar heating plant in Europe with borehole storage in rock not utilizing a heat pump. Earlier evaluations of the system show lower performance than the preliminary simulation study, with residents complaining of a high use of electricity for domestic hot water (DHW) preparation and auxiliary heating. One explanation mentioned in the earlier evaluations is that the borehole storage had not yet reached “steady state” temperatures at the time of evaluation. Many years have passed since then and this paper presents results from a new evaluation. The main aim of this work is to evaluate the current performance of the system based on several key figures, as well as on system function based on available measurement data. The analysis show that though the borehole storage now has reached a quasi-steady state and operates as intended, the auxiliary electricity consumption is much higher than the original design values largely due to high losses in the distribution network, higher heat loads as well as lower solar gains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Solar HeatIntegration NEtwork (SHINE) is a European research school in which 13 PhDstudents in solar thermal technologies are funded by the EU Marie-Curie program.It has five PhD course modules as well as workshops and seminars dedicated to PhDstudents both within the project as well as outside of it. The SHINE researchactivities focus on large solar heating systems and new applications: ondistrict heating, industrial processes and new storage systems. The scope ofthis paper is on systems for district heating for which there are five PhDstudents, three at universities and two at companies. The PhD students allstarted during the early part of 2014 and their initial work has concentratedon literature studies and on setting up models and data collection to be usedfor validation purposes. The PhD students will complete their studies in2017-18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for cooling and air-conditioning of building is increasingly ever growing. This increase is mostly due to population and economic growth in developing countries, and also desire for a higher quality of thermal comfort. Increase in the use of conventional cooling systems results in larger carbon footprint and more greenhouse gases considering their higher electricity consumption, and it occasionally creates peaks in electricity demand from power supply grid. Solar energy as a renewable energy source is an alternative to drive the cooling machines since the cooling load is generally high when solar radiation is high. This thesis examines the performance of PV/T solar collector manufactured by Solarus company in a solar cooling system for an office building in Dubai, New Delhi, Los Angeles and Cape Town. The study is carried out by analyzing climate data and the requirements for thermal comfort in office buildings. Cooling systems strongly depend on weather conditions and local climate. Cooling load of buildings depend on many parameters such as ambient temperature, indoor comfort temperature, solar gain to the building and internal gains including; number of occupant and electrical devices. The simulations were carried out by selecting a suitable thermally driven chiller and modeling it with PV/T solar collector in Polysun software. Fractional primary energy saving and solar fraction were introduced as key figures of the project to evaluate the performance of cooling system. Several parametric studies and simulations were determined according to PV/T aperture area and hot water storage tank volume. The fractional primary energy saving analysis revealed that thermally driven chillers, particularly adsorption chillers are not suitable to be utilizing in small size of solar cooling systems in hot and tropic climates such as Dubai and New Delhi. Adsorption chillers require more thermal energy to meet the cooling load in hot and dry climates. The adsorption chillers operate in their full capacity and in higher coefficient of performance when they run in a moderate climate since they can properly reject the exhaust heat. The simulation results also indicated that PV/T solar collector have higher efficiency in warmer climates, however it requires a larger size of PV/T collectors to supply the thermally driven chillers for providing cooling in hot climates. Therefore using an electrical chiller as backup gives much better results in terms of primary energy savings, since PV/T electrical production also can be used for backup electrical chiller in a net metering mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of technical and financial feasibility of the use of a solar system for water heating in a fictitious hotel located in the Northeast region. Thereunto it is used techniques of solar collectors´ sizing and methods of financial mathematics, such as Net Present Value (NPV), Internal Rate of Return (IRR) and Payback. It will also be presented a sensitivity analysis to verify which are the factors that impact the viability of the solar heating. Comparative analysis will be used concerning three cities of distinct regions of Brazil: Curitiba, Belém and João Pessoa. The viability of using a solar heating system will be demonstrated to the whole Brazil, especially to the northeast region as it is the most viable for such an application of solar power because of its high levels of solar radiation. Among the cities examined for a future installation of solar heating systems for water heating in the hotel chain, João Pessoa was the one that has proved more viable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of the Universal Technical Standard for Solar Home Systems, procedures to test the compliance of SHS fluorescent lamps with the standard have been developed. Definition of the laboratory testing procedures is a necessary step in any lamp quality assurance procedure. Particular attention has been paid to test simplicity and to affordability, in order to facilitate local application of the testing procedures, for example by the organisations which carry out electrification programmes. The set of test procedures has been applied to a representative collection of 42 lamps from many different countries, directly acquired in the current photovoltaic rural electrification market. Tests apply to: lamp resistance under normal operating conditions; lamp reliability under extreme conditions; under abnormal conditions; and lamp luminosity. Results are discussed and some recommendations for updating the relevant standard are given. The selected technical standard, together with the proposed testing procedures, form the basis of a complete quality assurance tool that can be applied locally in normal electrical laboratories. Full testing of a lamp requires less than one month, which is very reasonable on the context of quality assurance programmes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La electrificación rural fotovoltaica ha experimentado últimamente un salto de escala tanto en la dimensión de sus programas como en sus sistemas de gestión. Garantizar la calidad técnica ya no se reduce solamente a la fase de diseño e instalación, sino también a la de operación y mantenimiento. El presente trabajo trata de caracterizar la fase de operación del programa de electrificación rural fotovoltaico de Marruecos sobre el cual se ha llevado a cabo un exhaustivo estudio de fiabilidad de los distintos componentes que integran los sistemas solares (SHS), así como una evaluación de los costes unitarios ligados al mantenimiento, analizando su impacto en la estructura general de costes del programa. Los resultados van dirigidos hacia la caracterización de un modelo de la estructura de mantenimiento que logre asegurar la sostenibilidad de este tipo de programas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the consolidation of the new solid state lighting LEOs devices, te5t1n9 the compliance 01 lamps based on this technology lor Solar Home Systems (SHS) have been analyzed. The definition of the laboratory procedures to be used with final products 15 a necessary step in arder to be able to assure the quality of the lamps prior to be installed [1]. As well as with CFL technology. particular attention has been given to simplicity and technical affordability in arder to facilitate the implementation of the test with basie and simple laboratory too15 even on the same SHS electrification program locations. The block of test procedures has been applied to a set of 14 low-cost lamps. They apply to lamp resistance, reliability and performance under normal, extreme and abnormal operating conditions as a simple but complete quality meter tool 01 any LEO bulb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this paper, we present a theoretical model based on the detailed balance theory of solar thermophotovoltaic systems comprising multijunction photovoltaic cells, a sunlight concentrator and spectrally selective surfaces. The full system has been defined by means of 2n + 8 variables (being n the number of sub-cells of the multijunction cell). These variables are as follows: the sunlight concentration factor, the absorber cut-off energy, the emitter-to-absorber area ratio, the emitter cut-off energy, the band-gap energy(ies) and voltage(s) of the sub-cells, the reflectivity of the cells' back-side reflector, the emitter-to-cell and cell-to-cell view factors and the emitter-to-cell area ratio. We have used this model for carrying out a multi-variable system optimization by means of a multidimensional direct-search algorithm. This analysis allows to find the set of system variables whose combined effects results in the maximum overall system efficiency. From this analysis, we have seen that multijunction cells are excellent candidates to enhance the system efficiency and the electrical power density. Particularly, multijunction cells report great benefits for systems with a notable presence of optical losses, which are unavoidable in practical systems. Also, we have seen that the use of spectrally selective absorbers, rather than black-body absorbers, allows to achieve higher system efficiencies for both lower concentration and lower emitter-to-absorber area ratio. Finally, we have seen that sun-to-electricity conversion efficiencies above 30% and electrical power densities above 50 W/cm2 are achievable for this kind of systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La electrificación rural fotovoltaica ha experimentado últimamente un salto de escala tanto en la dimensión de sus programas como en sus sistemas de gestión. Garantizar la calidad técnica ya no se reduce solamente a la fase de dise~o e instalación, sino también a la de operación y mantenimiento. El estudio del Instituto de Energfa Solar de la Universidad Politécnica de Madrid trata de caracterizar la fase de ope ración del programa de electrificación rural fotovoltaico de Marruecos sobre el cual se ha llevado a cabo un exhaustivo estudio de fiabilidad de los distintos componentes que integran los denominados Solar Heme 5ysrems (SHS). Ase como una evaluación de los costes unitarios ligados al mantenimiento, analizando su impacto en la estructura general de costes del programa. Los resultados van dirigidos hacia la caracterización de un modelo de la estructura de mantenimiento que logre asegurar la sostenibilidad de este tipo de programas energéticos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiences in decentralized rural electrification programmes using solar home systems have suffered difficulties during the operation and maintenance phase, due in many cases, to the underestimation of the maintenance cost, because of the decentralized character of the activity, and also because the reliability of the solar home system components is frequently unknown. This paper reports on the reliability study and cost characterization achieved in a large photovoltaic rural electrification programme carried out in Morocco. The paper aims to determinate the reliability features of the solar systems, focusing in the in-field testing for batteries and photovoltaic modules. The degradation rates for batteries and PV modules have been extracted from the in-field experiments. On the other hand, the main costs related to the operation and maintenance activity have been identified with the aim of establishing the main factors that lead to the failure of the quality sustainability in many rural electrification programmes.