996 resultados para Soils - Quality


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical quality of Amazonian soils is relatively unexplored, due to the unique characteristics of these soils. The index of soil physical quality is a widely accepted measure of the structural quality of soils and has been used to specify the structural quality of some tropical soils, as for example of the Cerrado ecoregion of Brazil. The research objective was to evaluate the physical quality index of an Amazonian dystrophic Oxisol under different management systems. Soils under five managements were sampled in Paragominas, State of Pará: 1) a 20-year-old second-growth forest (Forest); 2) Brachiaria sp pasture; 3) four years of no-tillage (NT4.); 4) eight years of no-tillage (NT8); and 5) two years of conventional tillage (CT2). The soil samples were evaluated for bulk density, macro and microporosity and for soil water retention. The physical quality index of the samples was calculated and the resulting value correlated with soil organic matter, bulk density and porosity. The surface layers of all systems were more compacted than those of the forest. The physical quality of the soil was best represented by the relations of the S index to bulk density and soil organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents) explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density) under different land uses (native forest, no-tillage and conventional agriculture) on small family farms in Southern Brazil. The results showed that the five properties evaluated can be included in soil quality assessments and are not influenced by the clay and iron oxide contents. It was concluded that for little weathered 1:1 and 2:1 phyllosilicate rich-soils, if the difference between the maximum and the minimum clay content under the different land uses is less than about 200 g kg-1 and the iron oxide content less than about 15 g kg-1, the physico-chemical soil properties in the surface layer are determined mostly by the land use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The S-index was introduced in 2004 in a publication by A.R. Dexter. S was proposed as an indicator of soil physical quality. A critical value delimiting soils with rich and poor physical quality was proposed. At present, Brazil is world leader in citations of Dexter's publication. In this publication the S-theory is mathematically revisited and extended. It is shown that S is mathematically correlated to bulk density and total porosity. As an absolute indicator, the value of S alone has proven to be incapable of predicting soil physical quality. The critical value does not always hold under boundary conditions described in the literature. This is to be expected because S is a static parameter, therefore implicitly unable to describe dynamic processes. As a relative indicator of soil physical quality, the S-index has no additional value over bulk density or total porosity. Therefore, in the opinion of the author, the fact that bulk density or total porosity are much more easily determined than the water retention curve for obtaining S disqualifies S as an advantageous indicator of relative soil physical quality. Among the several equations available for the fitting of water retention curves, the Groenevelt-Grant equation is preferable for use with S since one of its parameters and S are linearly correlated. Since efforts in soil physics research have the purpose of describing dynamic processes, it is the author's opinion that these efforts should shift towards mechanistic soil physics as opposed to the search for empirical correlations like S which, at present, represents far more than its reasonable share of soil physics in Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable use of soil, maintaining or improving its quality, is one of the goals of diversification in farmlands. From this point of view, bioindicators associated with C, N and P cycling can be used in assessments of land-use effects on soil quality. The aim of this study was to investigate chemical, microbiological and biochemical properties of soil associated with C, N and P under different land uses in a farm property with diversified activity in northern Parana, Brazil. Seven areas under different land uses were assessed: fragment of native Atlantic Forest; growing of peach-palm (Bactrys gasipaes); sugarcane ratoon (Saccharum officinarum) recently harvested, under renewal; growing of coffee (Coffea arabica) intercropped with tree species; recent reforestation (1 year) with native tree species, previously under annual crops; annual crops under no-tillage, rye (Cecale cereale); secondary forest, regenerated after abandonment (for 20 years) of an avocado (Persea americana) orchard. The soil under coffee, recent reforestation and secondary forest showed higher concentrations of organic carbon, but microbial biomass and enzyme activities were higher in soils under native forest and secondary forest, which also showed the lowest metabolic coefficient, followed by the peach-palm area. The lowest content of water-dispersible clay was found in the soil under native forest, differing from soils under sugarcane and secondary forest. Soil cover and soil use affected total organic C contents and soil enzyme and microbial activities, such that more intensive agricultural uses had deeper impacts on the indicators assessed. Calculation of the mean soil quality index showed that the secondary forest was closest to the fragment of native forest, followed by the peach-palm area, coffee-growing area, annual crop area, the area of recent reforestation and the sugarcane ratoon area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere) and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt), and water storage capacity (FC/Pt) of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil) under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035). The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soils constructed after mining often have low carbon (C) stocks and low quality of organic matter (OM). Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC) stocks, C distribution in physical fractions of OM and the C management index (CMI) of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactylon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC) and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF) of OM were determined. The CMI components: carbon pool index (CPI), lability (L) and lability index (LI) were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Soil contamination by heavy metals threatens ecosystems and human health. Environmental monitoring bodies need reference values for these contaminants to assess the impacts of anthropogenic activities on soil contamination. Quality reference values (QRVs) reflect the natural concentrations of heavy metals in soils without anthropic interference and must be regionally established. The aim of this study was to determine the natural concentrations and quality reference values for the metals Ag, Ba, Cd, Co, Cu, Cr, Mo, Ni, Pb, Sb and Zn in soils of Paraíba state, Brazil. Soil samples were collected from 94 locations across the state in areas of native vegetation or with minimal anthropic interference. The quality reference values (QRVs) were (mg kg-1): Ag (<0.53), Ba (117.41), Cd (0.08), Co (13.14), Cu (20.82), Cr (48.35), Mo (0.43), Ni (14.44), Sb (0.61), Pb (14.62) and Zn (33.65). Principal component analysis grouped the metals Cd, Cr, Cu, Ni, Pb and Sb (PC1); Ag (PC2); and Ba, Co, Fe, Mn and Zn (PC3). These values were made official by Paraíba state through Normativa Resolution 3602/2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase II research included the following: (1) develop and evaluate alternative soil design and embankment construction specifications based on soil type, moisture, density, stability, and compaction process; (2) assess various quality control and acceptance procedures with a variety of in-situ test methods including the Dual-mass Dynamic Cone Penetrometer (DCP); and (3) develop and design rapid field soil identification methods. At the start of the research, soils were divided into cohesive and cohesionless soil types, with each category being addressed separately. Cohesionless soils were designated as having less than 36% fines content (material passing the No. 200 sieve) and cohesive soils as having greater than 36% fines content. Subsequently, soil categories were refined based not only on fines content but soil plasticity as well. Research activities included observations of fill placement, in-place moisture and density testing, and dual-mass DCP index testing on several highway embankment projects throughout Iowa. Experiments involving rubber-tired and vibratory compaction, lift thickness changes, and disk aeration were carried out for the full range of Iowa soils. By testing for soil stability the DCP was found to be a valuable field tool for quality control, whereby shortcomings from density testing (density gradients) were avoided. Furthermore, critical DCP index values were established based on soil type and compaction moisture content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a pavement depends on the quality of its subgrade and subbase layers; these foundational layers play a key role in mitigating the effects of climate and the stresses generated by traffic. Therefore, building a stable subgrade and a properly drained subbase is vital for constructing an effective and long lasting pavement system. This manual has been developed to help Iowa highway engineers improve the design, construction, and testing of a pavement system’s subgrade and subbase layers, thereby extending pavement life. The manual synthesizes current and previous research conducted in Iowa and other states into a practical geotechnical design guide [proposed as Chapter 6 of the Statewide Urban Design and Specifications (SUDAS) Design Manual] and construction specifications (proposed as Section 2010 of the SUDAS Standard Specifications) for subgrades and subbases. Topics covered include the important characteristics of Iowa soils, the key parameters and field properties of optimum foundations, embankment construction, geotechnical treatments, drainage systems, and field testing tools, among others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes test results from a full-scale embankment pilot study conducted in Iowa. The intent of the pilot project was to field test and refine the proposed soil classification system and construction specifications developed in Phase II of this research and to evaluate the feasibility of implementing a contractor quality control (QC) and Iowa DOT quality assurance (QA) program for earthwork grading in the future. One of the primary questions for Phase III is “Was embankment quality improved?” The project involved a “quality conscious” contractor, well-qualified and experienced Iowa Department of Transportation field personnel, a good QC consultant technician, and some of our best soils in the state. If the answer to the above question is “yes” for this project, it would unquestionably be “yes” for other projects as well. The answer is yes, the quality was improved, even for this project, as evidenced by dynamic cone penetrometer test data and the amount of disking required to reduce the moisture content to within acceptable control limits (approximately 29% of soils by volume required disking). Perhaps as important is that we know what quality we have. Increased QC/QA field testing, however, increases construction costs, as expected. The quality management-earthwork program resulted in an additional $0.03 per cubic meter, or 1.6%, of the total construction costs. Disking added about $0.04 per cubic meter, or 1.7%, to the total project costs. In our opinion this is a nominal cost increase to improve quality. It is envisioned that future contractor innovations have the potential for negating this increase. The Phase III results show that the new soil classification system and the proposed field test methods worked well during the Iowa Department of Transportation soils design phase and during the construction phase. Recommendations are provided for future implementation of the results of this study by city, county, and state agencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to construct a simple index based on the presence/absence of different groups of soil macrofauna to determine the ecological quality of soils. The index was tested with data from 20 sites in South and Central Tabasco, Mexico, and a positive relation between the model and the field observations was detected. The index showed that diverse agroforestry systems had the highest soil quality index (1.00), and monocrops without trees, such as pineapple, showed the lowest soil quality index (0.08). Further research is required to improve this model for natural systems that have very low earthworm biomass (<10 g m-2) and a high number of earthworm species (5-7), as it is in the tropical rain forest, whose soil quality index was medium (0.5). The application of this index will require an illustrated guide for its users. Further studies are required in order to test the use of this index by farmers.